open access

Vol 89, No 3 (2021)
Review paper
Submitted: 2021-01-13
Accepted: 2021-03-10
Published online: 2021-06-30
Get Citation

Comprehensive assessment of respiratory function, a step towards early weaning from the ventilator

Camila del Mar Sánchez Sánchez1, María Erika Molina-Peña1, Claudia Yaneth Rodriguez-Triviño1
DOI: 10.5603/ARM.a2021.0055
·
Pubmed: 34196383
·
Adv Respir Med 2021;89(3):299-310.
Affiliations
  1. Fundación Universitaria Navarra — Uninavarra, Neiva, Colombia

open access

Vol 89, No 3 (2021)
REVIEWS
Submitted: 2021-01-13
Accepted: 2021-03-10
Published online: 2021-06-30

Abstract

Methods for assessing diaphragmatic function can be useful in determining the functional status of the respiratory system and can contribute to determining an individual’s prognosis, depending on their pathology. They can also be a useful tool for making objective decisions regarding mechanical ventilation weaning and extubation. Esophageal and transdiaphragmatic pressure measurement, diaphragm ultrasound, diaphragmatic excursion, surface electromyography (sEMG) and some serum biomarkers are of increasing interest and use in clinical and intensive care settings to offer a more objective process for withdrawing mechanical ventilation; especially in the situation that we are experiencing with the increased demand for mechanical ventilation to treat patients with Covid-19-associated viral pneumonia. In this literature review, we updated the clinical and physiological indicators with more evidence to improve ventilator withdrawal techniques. We concluded that, to ensure successful extubation in a way that is useful, cost-effective, practical for health personnel and non-invasive for the patient, further studies of novel techniques such as surface electromyography should be implemented.

Abstract

Methods for assessing diaphragmatic function can be useful in determining the functional status of the respiratory system and can contribute to determining an individual’s prognosis, depending on their pathology. They can also be a useful tool for making objective decisions regarding mechanical ventilation weaning and extubation. Esophageal and transdiaphragmatic pressure measurement, diaphragm ultrasound, diaphragmatic excursion, surface electromyography (sEMG) and some serum biomarkers are of increasing interest and use in clinical and intensive care settings to offer a more objective process for withdrawing mechanical ventilation; especially in the situation that we are experiencing with the increased demand for mechanical ventilation to treat patients with Covid-19-associated viral pneumonia. In this literature review, we updated the clinical and physiological indicators with more evidence to improve ventilator withdrawal techniques. We concluded that, to ensure successful extubation in a way that is useful, cost-effective, practical for health personnel and non-invasive for the patient, further studies of novel techniques such as surface electromyography should be implemented.

Get Citation

Keywords

airway extubation, COVID-19, ultrasonography, electromyography, diaphragm

About this article
Title

Comprehensive assessment of respiratory function, a step towards early weaning from the ventilator

Journal

Advances in Respiratory Medicine

Issue

Vol 89, No 3 (2021)

Article type

Review paper

Pages

299-310

Published online

2021-06-30

DOI

10.5603/ARM.a2021.0055

Pubmed

34196383

Bibliographic record

Adv Respir Med 2021;89(3):299-310.

Keywords

airway extubation
COVID-19
ultrasonography
electromyography
diaphragm

Authors

Camila del Mar Sánchez Sánchez
María Erika Molina-Peña
Claudia Yaneth Rodriguez-Triviño

References (82)
  1. Esper R, Talavante Y. Evaluación ultrasonográfica del diafragma en el enfermo grave. Rev Asoc Mex Med Crit Ter Int. 2014; 28(3): 187–194.
  2. Orozco-Levi M, Gea J. El diafragma. Archivos de Bronconeumología. 1997; 33(8): 399–411.
  3. Valenzuela V J, Pinochet U R, Escobar C M, et al. Ventilator-induced diaphragmatic dysfunction. Rev Chil Pediatr. 2014; 85(4): 491–498.
  4. Díaz M, Ospina-Tascón G, C BS. Disfunción muscular respiratoria: una entidad multicausal en el paciente críticamente enfermo sometido a ventilación mecánica. Archivos de Bronconeumología. 2014; 50(2): 73–77.
  5. Molina Peña ME, Sánchez CM, Rodríguez-Triviño CY. Physiopathological mechanisms of diaphragmatic dysfunction associated with mechanical ventilation. Rev Esp Anestesiol Reanim. 2020; 67(4): 195–203.
  6. Shanely RA, Zergeroglu MA, Lennon SL, et al. Mechanical ventilation-induced diaphragmatic atrophy is associated with oxidative injury and increased proteolytic activity. Am J Respir Crit Care Med. 2002; 166(10): 1369–1374.
  7. Quintard H, l'Her E, Pottecher J, et al. Intubation and extubation of the ICU patient. Anaesth Crit Care Pain Med. 2017; 36(5): 327–341.
  8. Boles JM, Bion J, Connors A, et al. Weaning from mechanical ventilation. Eur Respir J. 2007; 29(5): 1033–1056.
  9. Frutos-Vivar F, Esteban A. Weaning from mechanical ventilation: why are we still looking for alternative methods? Med Intensiva. 2013; 37(9): 605–617.
  10. Oliveira da Silva AM, Maturi S, Boin IF. Comparison of surface electromyography in respiratory muscles of healthy and liver disease patients: preliminary studies. Transplant Proc. 2011; 43(4): 1325–1326.
  11. Vassilakopoulos T, Zakynthinos S, Roussos C. The tension-time index and the frequency/tidal volume ratio are the major pathophysiologic determinants of weaning failure and success. Am J Respir Crit Care Med. 1998; 158(2): 378–385.
  12. Hussain SNA, Cornachione AS, Guichon C, et al. Prolonged controlled mechanical ventilation in humans triggers myofibrillar contractile dysfunction and myofilament protein loss in the diaphragm. Thorax. 2016; 71(5): 436–445.
  13. Venugopal G, Deepak P, Ghosh DM, et al. Generation of synthetic surface electromyography signals under fatigue conditions for varying force inputs using feedback control algorithm. Proc Inst Mech Eng H. 2017; 231(11): 1025–1033.
  14. Yang KL, Tobin MJ, Tobin MJ, et al. Weaning from mechanical ventilation. Crit Care Clin. 1990; 6(3): 725–747.
  15. Rivas-Salazar RJ, Baltazar-Torres JÁ, Arvizu-Tachiquín PC, et al. Threshold value of f/Vt index for predicting successful weaning from mechanical ventilation in active smokers. Rev Med Inst Mex Seguro Soc. 2016; 54(4): 414–420.
  16. Forgiarini Junior LA, Bosco AD, Dias AS. Evaluating the use of the Tobin index on mechanical ventilation weaning after general anesthesia. Rev Bras Anestesiol. 2009; 59(3): 382–383.
  17. Palacios EM. Utilidad de la relación F/Vt (Índice de ventilación superficial) protocolo de Yang y Tobin como criterio de retiro de la asistencia ventilatoria. Revista de la Asociación Mexicana de Medicina Crítica Y Terapia intensiva. 2007; 21(4): 188–193.
  18. Yang KL, Tobin MJ. A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation. N Engl J Med. 1991; 324(21): 1445–1450.
  19. França AG, Ebeid A, Formento C, et al. Weaning in a multipurpose ICU. Incidence and risk factors for failure. Assessment of predictive indices. Rev Médica Urug. 2013; 29(2): 85–96.
  20. Ladeira MT, Vital FMR, Andriolo RB, et al. Pressure support versus T-tube for weaning from mechanical ventilation in adults. Cochrane Database Syst Rev. 2014(5): CD006056.
  21. Cortés-Román J, Sánchez-Díaz J, Castañeda-Valladares E, et al. Índices de oxigenación como predictores de fracaso en la extubación en pacientes críticamente enfermos. Acta Colombiana de Cuidado Intensivo. 2018; 18(3): 140–146.
  22. Hernández-López GD, Cerón-Juárez R, Escobar-Ortiz D, et al. et al.. Weaning from mechanical ventilation. Med Crit. 2017; 31(4): 238–245.
  23. Soo Hoo GW. Minute ventilation: it takes time to get it right. Respir Care. 2005; 50(4): 459–461.
  24. Seymour CW, Christie JD, Gaughan C, et al. Measurement of a baseline minute ventilation for the calculation of minute ventilation recovery time: is a subjective method reliable? Respir Care. 2005; 50(4): 468–472.
  25. Burns SM, Fisher C, Earven Tribble SS, et al. Multifactor clinical score and outcome of mechanical ventilation weaning trials: Burns Wean Assessment Program. Am J Crit Care. 2010; 19(5): 431–439.
  26. León-Gutiérrez MA, Tanus-Hajj J, Sánchez-Hurtado LA. Predictors of extubation failure in neurosurgical patients. Rev Med Inst Mex Seguro Soc. 2016; 54 Suppl 2: S196–S201.
  27. Nemer SN, Barbas CSV, Caldeira JB, et al. A new integrative weaning index of discontinuation from mechanical ventilation. Crit Care. 2009; 13(5): R152.
  28. Aguirre-Bermeo H, Bottiroli M, Italiano S, et al. Pressure support ventilation and proportional assist ventilation during weaning from mechanical ventilation. Med Intensiva. 2014; 38(6): 363–370.
  29. Montes de Oca Sandoval MA, Rodríguez Reyes J, Villalobos JA. Modalidades de destete: Ventilación con presión soporte, presión positiva bifásica y liberación de presión de la vía aérea. Med Crit. 2008; 22: 260–270.
  30. Esteban A, Alia I, Gordo F, et al. Extubation outcome after spontaneous breathing trials with T-tube or pressure support ventilation. American Journal of Respiratory and Critical Care Medicine. 1997; 156(2): 459–465.
  31. García EZ, Vera AR, Rodríguez LL. Presión soporte, tubo en T y Presión Positiva Continua en Vía Aérea como métodos de destete ventilatorio en el paciente crítico adulto intubado. Bibl Lascasas. http://ciberindex.com/index.php/lc/article/view/e12100 (December 8 2020).
  32. Khemani RG, Hotz J, Morzov R, et al. Pediatric extubation readiness tests should not use pressure support. Intensive Care Med. 2016; 42(8): 1214–1222.
  33. Donn S, Sinha S. Synchronized Intermittent Mandatory Ventilation. Manual of Neonatal Respiratory Care. 2006: 200–202.
  34. Greenough A, Rossor TE, Sundaresan A, et al. Synchronized mechanical ventilation for respiratory support in newborn infants. Cochrane Database Syst Rev. 2016; 9(8): CD000456.
  35. Núñez GF, Llanes JMI, Noas Y, et al. Application of continous positive pressure ventilation in the neonatal intensive care unit - Aplicación de la ventilación con presión positiva continua en la unidad de cuidados intensivos neonatales. Revista de Ciencias Médicas de la Habana. 2013; 1: 9.
  36. Fiz JA, Morera J. Exploración funcional de los músculos respiratorios. Archivos de Bronconeumología. 2000; 36(7): 391–410.
  37. Chiumello D, Consonni D, Coppola S, et al. The occlusion tests and end-expiratory esophageal pressure: measurements and comparison in controlled and assisted ventilation. Ann Intensive Care. 2016; 6(1): 13.
  38. Dres M, Demoule A. Use of transient elastogaphy to assess diaphragm function in mechanically ventilated patients- ClinicalKey. https://www.clinicalkey.es/#!/content/clinical_trial/24-s2.0-NCT03832231 (May 19, 2019).
  39. Akoumianaki E, Maggiore SM, Valenza F, et al. PLUG Working Group (Acute Respiratory Failure Section of the European Society of Intensive Care Medicine). The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med. 2014; 189(5): 520–531.
  40. Supinski GS, Westgate P, Callahan LA. Correlation of maximal inspiratory pressure to transdiaphragmatic twitch pressure in intensive care unit patients. Crit Care. 2016; 20: 77.
  41. Tanaka Montoya A, Amador Martínez A, Delgado Mercado LY, et al. Medición del grosor diafragmático como parámetro predictivo para retiro de ventilación mecánica invasiva en pacientes de terapia intensiva. Med Crítica Col Mex Med Crítica. 2017; 31(4): 190–197.
  42. Briceño VC, Reyes BT, Sáez BJ, et al. Evaluación de los músculos respiratorios en la parálisis diafragmática bilateral. Revista chilena de enfermedades respiratorias. 2014; 30(3): 166–171.
  43. Milic-Emili J, Mead J, Turner JM, et al. Improved technique for estimating pleural pressure from esophageal balloons. J Appl Physiol. 1964; 19: 207–211.
  44. Mauri T, Yoshida T, Bellani G, et al. PLeUral pressure working Group (PLUG—Acute Respiratory Failure section of the European Society of Intensive Care Medicine). Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med. 2016; 42(9): 1360–1373.
  45. Terzi N, Bayat S, Noury N, et al. Comparison of pleural and esophageal pressure in supine and prone positions in a porcine model of acute respiratory distress syndrome. J Appl Physiol (1985). 2020; 128(6): 1617–1625.
  46. Sun XM, Chen GQ, Huang HW, et al. Use of esophageal balloon pressure-volume curve analysis to determine esophageal wall elastance and calibrate raw esophageal pressure: a bench experiment and clinical study. BMC Anesthesiol. 2018; 18(1): 21.
  47. Doorduin J, Roesthuis LH, Jansen D, et al. Respiratory muscle effort during expiration in successful and failed weaning from mechanical ventilation. Anesthesiology. 2018; 129(3): 490–501.
  48. Garegnani LI, Rosón Rodriguez P, Franco JVA, et al. Esophageal pressure monitoring during mechanical ventilation in critically ill adult patients: A systematic review and meta-analysis. Med Intensiva (Engl Ed). 2020 [Epub ahead of print].
  49. Brochard L. Measurement of esophageal pressure at bedside: pros and cons. Curr Opin Crit Care. 2014; 20(1): 39–46.
  50. Jubran A, Grant BJB, Laghi F, et al. Weaning prediction: esophageal pressure monitoring complements readiness testing. Am J Respir Crit Care Med. 2005; 171(11): 1252–1259.
  51. Esper RC, Talamantes YG. Ultrasonographic evaluation of the diaphragm in critically ill patients. Rev Asoc Mex Med Crit Ter Int. 2014; 28(3): 187–194.
  52. Varón-Vega F, Hernández Á, López M, et al. Usefulness of diaphragmatic ultrasound in predicting extubation success. Med Intensiva (Engl Ed). 2021; 45(4): 226–233.
  53. Matamis D, Soilemezi E, Tsagourias M, et al. Sonographic evaluation of the diaphragm in critically ill patients. Technique and clinical applications. Intensive Care Med. 2013; 39(5): 801–810.
  54. Dot I, Pérez-Teran P, Samper MA, et al. Diaphragm dysfunction in mechanically ventilated patients. Arch Bronconeumol. 2017; 53(3): 150–156.
  55. Boussuges A, Gole Y, Blanc P. Diaphragmatic motion studied by m-mode ultrasonography: methods, reproducibility, and normal values. Chest. 2009; 135(2): 391–400.
  56. García-Sánchez A, Barbero E, Pintado B, et al. Disfunción diafragmática evaluada por ecografía como predictora del fracaso de la extubación: Revisión sistemática y metanálisis. Open Respiratory Archives. 2020; 2(4): 267–277.
  57. Pérez ML. Evaluación por imágenes del diafragma en el niño. Revista chilena de enfermedades respiratorias. 2012; 28(3): 236–248.
  58. Cohn D, Benditt JO, Eveloff S, et al. Diaphragm thickening during inspiration. J Appl Physiol (1985). 1997; 83(1): 291–296.
  59. Guarracino F, Vetrugno L, Forfori F, et al. Lung, heart, vascular, and diaphragm ultrasound examination of COVID-19 patients: A comprehensive approach. J Cardiothorac Vasc Anesth. 2021; 35(6): 1866–1874.
  60. Theerawit P, Eksombatchai D, Sutherasan Y, et al. Diaphragmatic parameters by ultrasonography for predicting weaning outcomes. BMC Pulm Med. 2018; 18(1): 175.
  61. Liu LX, Su D, Hu ZJ. The value of the excursion of diaphragm tested by ultrosonography to predict weaning from mechanical ventilation in ICU patients. Zhonghua Nei Ke Za Zhi. 2017; 56(7): 495–499.
  62. Carrie C, Gisbert-Mora C, Bonnardel E, et al. Ultrasonographic diaphragmatic excursion is inaccurate and not better than the MRC score for predicting weaning-failure in mechanically ventilated patients. Anaesth Crit Care Pain Med. 2017; 36(1): 9–14.
  63. Meekins GD, So Y, Quan D. American Association of Neuromuscular & Electrodiagnostic Medicine evidenced-based review: use of surface electromyography in the diagnosis and study of neuromuscular disorders. Muscle Nerve. 2008; 38(4): 1219–1224.
  64. Shahgholi L, Baria MR, Sorenson EJ, et al. Diaphragm depth in normal subjects. Muscle Nerve. 2014; 49(5): 666–668.
  65. Jeffreys E, Hunt KA, Dassios T, et al. Diaphragm electromyography results at different high flow nasal cannula flow rates. Eur J Pediatr. 2019; 178(8): 1237–1242.
  66. Castelein B, Cools A, Bostyn E, et al. Analysis of scapular muscle EMG activity in patients with idiopathic neck pain: a systematic review. J Electromyogr Kinesiol. 2015; 25(2): 371–386.
  67. Massó N, Rey F, Romero D, Gual G, Costa L, Germán A. Aplicaciones de la electromiografía de superficie en el deporte. Apunts Sports Med. 2010;45(166):127-136. . http://www.apunts.org/en-aplicaciones-electromiografia-superficie-el-deporte-articulo-XX886658110515098 (September 22, 2020).
  68. Valentin S, Zsoldos RR. Surface electromyography in animal biomechanics: A systematic review. J Electromyogr Kinesiol. 2016; 28: 167–183.
  69. Beniczky S, Conradsen I, Wolf P. Detection of convulsive seizures using surface electromyography. Epilepsia. 2018; 59 Suppl 1: 23–29.
  70. Cavalcanti Garcia MA, Vieira TMM. Surface electromyography: Why, when and how to use it. Rev Andal Med Deporte. 2011; 4(1): 17–28.
  71. Massó N, Rey F, Romero D. Surface electromyography applications. Apunts Med Esport. 2010; 45(165): 121–130.
  72. Hu B, Zhang X, Mu J, et al. Spasticity assessment based on the Hilbert-Huang transform marginal spectrum entropy and the root mean square of surface electromyography signals: a preliminary study. Biomed Eng Online. 2018; 17(1): 27.
  73. Kian-Bostanabad S, Azghani MR. The relationship between RMS electromyography and thickness change in the skeletal muscles. Med Eng Phys. 2017; 43: 92–96.
  74. Lozano-García M, Sarlabous L, Moxham J, et al. Surface mechanomyography and electromyography provide non-invasive indices of inspiratory muscle force and activation in healthy subjects. Sci Rep. 2018; 8(1): 16921.
  75. Dorf. The Electrical Engineering Handbook Series. In: Third edition. Taylor & Francis; 2006: 889-900. https://www.redalyc.org/pdf/3233/323327665004.pdf.
  76. Gila L, Malanda A, Carreño IR, et al. Métodos de procesamiento y análisis de señales electromiográficas. Anales del Sistema Sanitario de Navarra. 2009; 32.
  77. De Matteis A, dell'Aquila M, Maiese A, et al. The Troponin-I fast skeletal muscle is reliable marker for the determination of vitality in the suicide hanging. Forensic Sci Int. 2019; 301: 284–288.
  78. Simpson JA, Van Eyk J, Iscoe S. Respiratory muscle injury, fatigue and serum skeletal troponin I in rat. J Physiol. 2004; 554(Pt 3): 891–903.
  79. Morales-Aguirre AM. PaO2 / FiO2 ratio or Kirby index: determination and use in pediatric population - Cociente PaO2/FiO2 o índice de Kirby: determinación y uso en población pediátrica. El residente. 2015; 10: 88–92.
  80. Sclauser Pessoa IMB, Franco Parreira V, Fregonezi GAF, et al. Reference values for maximal inspiratory pressure: a systematic review. Can Respir J. 2014; 21(1): 43–50.
  81. Castro Ávila AC, Rodríguez Saavedra MA. Índice de Respiración Rápida y Superficial medido durante dos tipos de ventilación. Published online 2006: 56.
  82. Ladeira MT, Vital FMR, Andriolo RB, et al. Pressure support versus T-tube for weaning from mechanical ventilation in adults. Cochrane Database Syst Rev. 2014(5): CD006056.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

Czasopismo Pneumonologia i Alergologia Polska dostęne jest również w Ikamed - księgarnia medyczna

Wydawcą serwisu jest "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail: viamedica@viamedica.pl