open access

Vol 86, No 4 (2018)
REVIEWS
Published online: 2018-08-15
Submitted: 2018-07-05
Accepted: 2018-08-08
Get Citation

Neprilysin inhibitors as a new approach in the treatment of right heart failure in the course of chronic obstructive pulmonary disease.

Maciej Liczek, Iga Panek, Piotr Damiański, Olga Jęczeń, Jędrzej Jaźwiec, Piotr Kuna, Michał Panek
DOI: 10.5603/ARM.a2018.0028
·
Pubmed: 30110121
·
Adv Respir Med 2018;86(4):183-191.

open access

Vol 86, No 4 (2018)
REVIEWS
Published online: 2018-08-15
Submitted: 2018-07-05
Accepted: 2018-08-08

Abstract

The aim of this paper was to review scientific evidence on the possible use of the combined angiotensin II receptor antagonist
and neprilysin inhibitors (ARNI) in patients with right heart failure (RHF) in the course of chronic obstructive pulmonary disease
(COPD). It has been proven that a lack of neprilysin or its reduced expression in hypoxia leads to exacerbation of pulmonary
arterial remodelling (PAR) or pulmonary hypertension (PH) in the mechanism related to the platelet-derived growth factor (PDGF)
resulting in the proliferation and migration of pulmonary artery smooth muscle cells and endothelial-to-mesenchymal transition.
Such action in the course of COPD can lead to RHF, which would signify noxious effect of this group of drugs. However, the
inhibition of neprilysin also hinders natriuretic peptide metabolism. The representative of this group — brain natriuretic peptide
(BNP) — acts as a vasodilator and also exerts an antiproliferative activity through the cGMP-dependent protein kinase G pathway.
Additionally, it causes bronchodilation by inducing the release of acetylcholine from bronchial epithelial cells. This suggests that
natriuretic peptides may appear to be a potential treatment agent in patients with cardiac complications and COPD. Their effects
associated with the immunosuppression capacity by reducing the release of inflammatory mediators — IL-6, IL-1b, and TNF-a
can bring benefits to patients with acute lung injury caused by pulmonary inflammation during COPD exacerbations. Considering
the potentially positive effect of natriuretic peptides in this group of patients, further research is required in this area, which can
provide strong scientific data demonstrating the need for introducing ARNI drugs to the treatment of patients with COPD.

Abstract

The aim of this paper was to review scientific evidence on the possible use of the combined angiotensin II receptor antagonist
and neprilysin inhibitors (ARNI) in patients with right heart failure (RHF) in the course of chronic obstructive pulmonary disease
(COPD). It has been proven that a lack of neprilysin or its reduced expression in hypoxia leads to exacerbation of pulmonary
arterial remodelling (PAR) or pulmonary hypertension (PH) in the mechanism related to the platelet-derived growth factor (PDGF)
resulting in the proliferation and migration of pulmonary artery smooth muscle cells and endothelial-to-mesenchymal transition.
Such action in the course of COPD can lead to RHF, which would signify noxious effect of this group of drugs. However, the
inhibition of neprilysin also hinders natriuretic peptide metabolism. The representative of this group — brain natriuretic peptide
(BNP) — acts as a vasodilator and also exerts an antiproliferative activity through the cGMP-dependent protein kinase G pathway.
Additionally, it causes bronchodilation by inducing the release of acetylcholine from bronchial epithelial cells. This suggests that
natriuretic peptides may appear to be a potential treatment agent in patients with cardiac complications and COPD. Their effects
associated with the immunosuppression capacity by reducing the release of inflammatory mediators — IL-6, IL-1b, and TNF-a
can bring benefits to patients with acute lung injury caused by pulmonary inflammation during COPD exacerbations. Considering
the potentially positive effect of natriuretic peptides in this group of patients, further research is required in this area, which can
provide strong scientific data demonstrating the need for introducing ARNI drugs to the treatment of patients with COPD.

Get Citation

Keywords

sacubitril, neprilysin, natriuretic peptides, right heart failure, chronic obstructive pulmonary disease

Supplementary Files (1)
Strona tytułowa w języku polskim
Download
9KB
About this article
Title

Neprilysin inhibitors as a new approach in the treatment of right heart failure in the course of chronic obstructive pulmonary disease.

Journal

Advances in Respiratory Medicine

Issue

Vol 86, No 4 (2018)

Pages

183-191

Published online

2018-08-15

DOI

10.5603/ARM.a2018.0028

Pubmed

30110121

Bibliographic record

Adv Respir Med 2018;86(4):183-191.

Keywords

sacubitril
neprilysin
natriuretic peptides
right heart failure
chronic obstructive pulmonary disease

Authors

Maciej Liczek
Iga Panek
Piotr Damiański
Olga Jęczeń
Jędrzej Jaźwiec
Piotr Kuna
Michał Panek

References (74)
  1. Pierzchała W, Niżankowska-Mogilnicka E, Mejza F. Przewlekła obturacyjna choroba płuc. In: Gajewski P, Niżankowska-Mogilnicka E, Mejza F. ed. Interna Szczeklika. Medycyna Praktyczna, Kraków 2017 : 681–695.
  2. GOLD. Pocket guide to COPD diagnosis, management and prevention: a guide for health care professionals. Glob Initiat Chronic Obstr Lung Dis Inc [Internet]. 2018; 1: 3–14. 2018.
  3. Mannino DM, Thorn D, Swensen A, et al. Prevalence and outcomes of diabetes, hypertension and cardiovascular disease in COPD. Eur Respir J. 2008; 32(4): 962–969.
  4. Rizkallah J, Man SF, Sin DD. Prevalence of pulmonary embolism in acute exacerbations of COPD: a systematic review and metaanalysis. Chest. 2009; 135(3): 786–793.
  5. Spruit MA, Pitta F, McAuley E, et al. Characteristics of physical activities in daily life in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005; 171(9): 972–977.
  6. Spruit MA, Singh SJ, Garvey C, et al. ATS/ERS Task Force on Pulmonary Rehabilitation. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. Am J Respir Crit Care Med. 2013; 188(8): e13–e64.
  7. Iborra-Egea O, Gálvez-Montón C, Roura S, et al. Mechanisms of action of sacubitril/valsartan on cardiac remodeling: a systems biology approach. NPJ Syst Biol Appl. 2017; 3: 12.
  8. Winter RJ, Zhao L, Krausz T, et al. Neutral endopeptidase 24.11 inhibition reduces pulmonary vascular remodeling in rats exposed to chronic hypoxia. Am Rev Respir Dis. 1991; 144(6): 1342–1346.
  9. Thompson JS, Morice AH. Neutral endopeptidase inhibitors and the pulmonary circulation. Gen Pharmacol. 1996; 27(4): 581–585.
  10. Klinger JR, Petit RD, Warburton RR, et al. Neutral endopeptidase inhibition attenuates development of hypoxic pulmonary hypertension in rats. J Appl Physiol (1985). 1993; 75(4): 1615–1623.
  11. Ambrosy AP, Mentz RJ, Fiuzat M, et al. The role of angiotensin receptor-neprilysin inhibitors in cardiovascular disease-existing evidence, knowledge gaps, and future directions. Eur J Heart Fail. 2018; 20(6): 963–972.
  12. Kubiak-Wlekły A, Niemir ZI. Neprilysin — structure of the gene and protein product and the localization of expression]. Pol Merkur Lekarski. 2009; 27(157): 48–50.
  13. Turner AJ, Matsas R, Kenny AJ. Endopeptidase-24.11 and neuropeptide metabolism. Biochem Soc Trans. 1984; 13: 11–14.
  14. Skidgel RA, Erdös EG. Angiotensin converting enzyme (ACE) and neprilysin hydrolyze neuropeptides: a brief history, the beginning and follow-ups to early studies. Peptides. 2004; 25(3): 521–525.
  15. Cohen A, Gilman L, Moore M, et al. Inactivation of neutral endopeptidase in lung cancer. Chest. 1996; 109(3).
  16. Albrecht M, Gillen S, Wilhelm B, et al. Expression, localization and activity of neutral endopeptidase in cultured cells of benign prostatic hyperplasia and prostate cancer. J Urol. 2002; 168(1): 336–342.
  17. Erin N, Korcum AF, Tanrıöver G, et al. Activation of neuroimmune pathways increases therapeutic effects of radiotherapy on poorly differentiated breast carcinoma. Brain Behav Immun. 2015; 48: 174–185.
  18. Ouimet T, Facchinetti P, Rose C, et al. Neprilysin II: A putative novel metalloprotease and its isoforms in CNS and testis. Biochem Biophys Res Commun. 2000; 271(3): 565–570.
  19. Dempsey EC, Wick MJ, Karoor V, et al. Neprilysin null mice develop exaggerated pulmonary vascular remodeling in response to chronic hypoxia. Am J Pathol. 2009; 174(3): 782–796.
  20. Wick MJ, Buesing EJ, Wehling CA, et al. Decreased neprilysin and pulmonary vascular remodeling in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011; 183(3): 330–340.
  21. Steiner MK. World Health Organization Class III COPD-associated pulmonary hypertension: are we there yet in understanding the pathobiology of the disease? Chest. 2009; 136(3): 658–659.
  22. Weitzenblum E, Chaouat A, Canuet M, et al. Pulmonary hypertension in chronic obstructive pulmonary disease and interstitial lung diseases. Semin Respir Crit Care Med. 2009; 30(4): 458–470.
  23. Rabinovitch MM. Pathobiology of pulmonary hypertension. Annual Review of Pathology: Mechanisms of Disease. 2007(2): 369–399.
  24. Peinado VI, Pizarro S, Barberà JA. Pulmonary vascular involvement in COPD. Chest. 2008; 134(4): 808–814.
  25. Karoor V, Oka M, Walchak SJ, et al. Neprilysin regulates pulmonary artery smooth muscle cell phenotype through a platelet-derived growth factor receptor-dependent mechanism. Hypertension. 2013; 61(4): 921–930.
  26. Dahal BK, Heuchel R, Pullamsetti SS, et al. Hypoxic pulmonary hypertension in mice with constitutively active platelet-derived growth factor receptor-β. Pulm Circ. 2011; 1(2): 259–268.
  27. Perros F, Dorfmüller P, Montani D, et al. Platelet-derived growth factor expression and function in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2008; 178(1): 81–88.
  28. Song S, Zhang M, Yi Z, et al. The role of PDGF-B/TGF-β1/neprilysin network in regulating endothelial-to-mesenchymal transition in pulmonary artery remodeling. Cell Signal. 2016; 28(10): 1489–1501.
  29. Chaouat A, Bugnet AS, Kadaoui N, et al. Severe pulmonary hypertension and chronic obstructive pulmonary disease. Am J Res Crit Care Med . 2005; 172: 189–194.
  30. Hassoun PM, Mouthon L, Barberà JA, et al. Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol. 2009; 54(1 Suppl): S10–S19.
  31. Parsons JT, Parsons SJ. Src family protein tyrosine kinases: cooperating with growth factor and adhesion signaling pathways. Curr Opin Cell Biol. 1997; 9(2): 187–192.
  32. ten Freyhaus H, Dumitrescu D, Berghausen E, et al. Imatinib mesylate for the treatment of pulmonary arterial hypertension. Expert Opinion on Investigational Drugs. 2012; 21: 119–134.
  33. Gore B, Izikki M, Mercier O, et al. Key role of the endothelial TGF-β/ALK1/endoglin signaling pathway in humans and rodents pulmonary hypertension. PLoS One. 2014; 9(6): e100310.
  34. Budd DC, Holmes AM. Targeting TGFβ superfamily ligand accessory proteins as novel therapeutics for chronic lung disorders. Pharmacol Ther. 2012; 135(3): 279–291.
  35. Gao Fu, Chambon P, Tellides G, et al. Disruption of TGF-β signaling in smooth muscle cell prevents flow-induced vascular remodeling. Biochem Biophys Res Commun. 2014; 454(1): 245–250.
  36. Beghe B, Bazzan E, Baraldo S, et al. Transforming growth factor-beta type II receptor in pulmonary arteries of patients with very severe COPD. Eur Respir J. 2006; 28(3): 556–562.
  37. Willett CG, Shahsafei A, Graham SA, et al. CD10/neutral endopeptidase inhibition augments pulmonary neuroendocrine cell hyperplasia in hamsters treated with diethylnitrosamine and hyperoxia. Am J Respir Cell Mol Biol. 1999; 21(1): 13–20.
  38. Gosney JR, Resl M. Pulmonary endocrine cells in plexogenic pulmonary arteriopathy associated with cirrhosis. Thorax. 1995; 50(1): 92–93.
  39. Gosney JR. Pulmonary neuroendocrine cell system in pediatric and adult lung disease. Microsc Res Tech. 1997; 37(1): 107–113.
  40. Shipp MA, Tarr GE, Chen CY, et al. CD10/neutral endopeptidase 24.11 hydrolyzes bombesin-like peptides and regulates the growth of small cell carcinomas of the lung. Proc Natl Acad Sci U S A. 1991; 88(23): 10662–10666.
  41. Johnson BE, Kelley MJ. Biology of small cell lung cancer. Lung Cancer. 1995; 12: S5–16.
  42. Hong Y, Beckett C, Belyaev ND, et al. The impact of amyloid precursor protein signalling and histone deacetylase inhibition on neprilysin expression in human prostate cells. Int J Cancer. 2012; 130(4): 775–786.
  43. Erin N, Korcum AF, Tanrıöver G, et al. Behavior, and Immunity Activation of neuroimmune pathways increases therapeutic effects of radiotherapy on poorly differentiated breast carcinoma. Brain Behav Immun. 2015; 48: 174–185.
  44. Terauchi M, Kajiyama H, Shibata K, et al. Anti-progressive effect of neutral endopeptidase 24.11 (NEP/CD10) on cervical carcinoma in vitro and in vivo. Oncology. 2005; 69(1): 52–62.
  45. Stephen HM, Khoury RJ, Majmudar PR, et al. Epigenetic suppression of neprilysin regulates breast cancer invasion. Oncogenesis. 2016; 5: e207.
  46. Erin N, İpekçi T, Akkaya B, et al. Neuropeptide levels as well as neprilysin activity decrease in renal cell carcinoma. Cancer Microenviron. 2016; 9(2-3): 141–147.
  47. Howell S, Nalbantoglu J, Crine P. Neutral endopeptidase can hydrolyze beta-amyloid(1-40) but shows no effect on beta-amyloid precursor protein metabolism. Peptides. 1995; 16(4): 647–652.
  48. Stryjewski PJ, Nessler B, Cubera K, et al. Natriuretic peptides. History of discovery, chemical structure, mechanism of action and the removal routes. Basis of diagnostic and therapeutic use. Przegl Lek. 2013; 70(7): 463–467.
  49. Jerczyńska H, Pawłowska Z. Natriuretic peptides--their receptors and role in cardiovascular system. Postepy Biochem. 2008; 54(1): 35–42.
  50. Minamino N, Nishikimi T. Natriuretic peptides. Handbook of Biologically Active Peptides. 2013: 1415–1422.
  51. Clerico A, Iervasi G, Mariani G. Pathophysiologic relevance of measuring the plasma levels of cardiac natriuretic peptide hormones in humans. Horm Metab Res. 1999; 31(9): 487–498.
  52. Kalra PR, Anker SD, Struthers AD, et al. The role of C-type natriuretic peptide in cardiovascular medicine. Eur Heart J. 2001; 22(12): 997–1007.
  53. Moniuszko M, Moniuszko A, Puciłowska J, et al. Czy oznaczanie stężeń peptydów natriuretycznych BNP i NT-proBNP przynosi korzyści w postępowaniu z pacjentem z nagłą dusznością? Choroby Serca i Naczyń. 2011; 8: 215–222.
  54. Mitkiewicz M. Structure, regulation and functions of particulate guanylyl cyclase type A. Postepy Hig Med Dosw (Online). 2015; 69: 457–468.
  55. Doborek Ł, Thor P. Natriuretic peptides as a target of modern pharmacotherapy. Farm Przegl Nauk. 2010; 1: 31–37.
  56. Pakuła D, Marek B, Kajdaniuk D, et al. Natriuretic peptides: their role in diagnosis and therapy. Endokrynologia Polska. 2007; 58: 364–374.
  57. Rosay T, Bazire A, Diaz S, et al. Pseudomonas aeruginosa expresses a functional human natriuretic peptide receptor ortholog: involvement in biofilm formation. MBio. 2015; 6(4).
  58. Perreault T, Gutkowska J. Role of atrial natriuretic factor in lung physiology and pathology. Am J Respir Crit Care Med. 1995; 151(1): 226–242.
  59. Casserly B, Klinger JR. Brain natriuretic peptide in pulmonary arterial hypertension: biomarker and potential therapeutic agent. Drug Des Devel Ther. 2009; 3: 269–287.
  60. Adnot S, Andrivet P, Chabrier PE, et al. Atrial natriuretic factor in chronic obstructive lung disease with pulmonary hypertension. Physiological correlates and response to peptide infusion. J Clin Invest. 1989; 83(3): 986–993.
  61. Hawkins NM, Khosla A, Virani SA, et al. B-type natriuretic peptides in chronic obstructive pulmonary disease: a systematic review. BMC Pulm Med. 2017; 17(1): 11.
  62. Klinger JR, Warburton RR, Pietras L, et al. Brain natriuretic peptide inhibits hypoxic pulmonary hypertension in rats. J Appl Physiol (1985). 1998; 84(5): 1646–1652.
  63. Hsu JH, Liou SF, Yang SN, et al. B-type natriuretic peptide inhibits angiotensin II-induced proliferation and migration of pulmonary arterial smooth muscle cells. Pediatr Pulmonol. 2014; 49(8): 734–744.
  64. Cargill RI, Lipworth BJ. Atrial natriuretic peptide and brain natriuretic peptide in cor pulmonale. Chest. 1996; 110: 1220–1225.
  65. Akerman MJ, Yaegashi M, Khiangte Z, et al. Bronchodilator effect of infused B-type natriuretic peptide in asthma. Chest. 2006; 130(1): 66–72.
  66. Calzetta L, Orlandi A, Page C, et al. Brain natriuretic peptide: Much more than a biomarker. Int J Cardiol. 2016; 221: 1031–1038.
  67. Angus RM, Millar EA, Chalmers GW, et al. Effect of inhaled thiorphan, a neutral endopeptidase inhibitor, on the bronchodilator response to inhaled atrial natriuretic peptide (ANP). Thorax. 1996; 51(1): 71–74.
  68. Koehne P, Schäper C, Graf K, et al. Neutral endopeptidase 24.11: its physiologic and possibly pathophysiologic role in inflammation with special effect on respiratory inflammation. Allergy. 1998; 53(11): 1023–1042.
  69. Edelson JD, Makhlina M, Silvester KR, et al. In vitro and in vivo pharmacological profile of PL-3994, a novel cyclic peptide (Hept-cyclo(Cys-His-Phe-d-Ala-Gly-Arg-d-Nle-Asp-Arg-Ile-Ser-Cys)-Tyr-[Arg mimetic]-NH(2)) natriuretic peptide receptor-A agonist that is resistant to neutral endopeptidase and acts as a bronchodilator. Pulm Pharmacol Ther. 2013; 26(2): 229–238.
  70. Nojiri T, Hosoda H, Tokudome T, et al. Atrial natriuretic peptide inhibits lipopolysaccharide-induced acute lung injury. Pulm Pharmacol Ther. 2014; 29(1): 24–30.
  71. Clamens T, Rosay T, Crépin A, et al. The aliphatic amidase AmiE is involved in regulation of Pseudomonas aeruginosa virulence. Sci Rep. 2017; 7: 41178.
  72. Malinowski M, Biernat J, Roleder T, et al. Natriuretic peptides: anything new in cardiology? Kardiol Pol. 2006; 64(10 Suppl 6): S578–S585.
  73. Cataliotti A, Schirger JA, Martin FL, et al. Oral human brain natriuretic peptide activates cyclic guanosine 3',5'-monophosphate and decreases mean arterial pressure. Circulation. 2005; 112(6): 836–840.
  74. Cataliotti A, Chen HH, James KD, et al. Oral brain natriuretic peptide: a novel strategy for chronic protein therapy for cardiovascular disease. Trends Cardiovasc Med. 2007; 17(1): 10–14.

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

Czasopismo Pneumonologia i Alergologia Polska dostęne jest również w Ikamed - księgarnia medyczna

Wydawcą serwisu jest "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail: viamedica@viamedica.pl