open access

Vol 85, No 2 (2017)
REVIEWS
Published online: 2017-04-24
Submitted: 2017-01-15
Accepted: 2017-03-20
Get Citation

Selected bone morphogenetic proteins — the possibility of their use in the diagnostics and therapy of severe asthma

Marcelina Koćwin, Mateusz Jonakowski, Marcelina Przemęcka, Michał Panek, Piotr Kuna
DOI: 10.5603/ARM.2017.0017
·
Adv Respir Med 2017;85(2):109-115.

open access

Vol 85, No 2 (2017)
REVIEWS
Published online: 2017-04-24
Submitted: 2017-01-15
Accepted: 2017-03-20

Abstract

Asthma is a chronic heterogeneous illness of the lower airway with an inflammatory basis, developing from hyperresponsiveness and bronchial obstruction. One of the more unfavourable processes occurring in the airway are the long-term changes of the respiratory tract known as remodelling, resulting in complete irreversible obstruction. Bone morphogenetic protein (BMP) is a member of the Transforming Growth Factor beta (TGF-b) superfamily, which regulates processes in embryonic and post-embryonic development. The role played by BMP is regulation of degradation and remodelling of the extracellular matrix, which is one of the elements involved in the reconstruction of the structure of the bronchi in severe asthma. This paper presents the antagonistic properties of BMP against TGF-b, anti-inflammatory and counteracting fibrosis in the respiratory tract. The current state of knowledge indicates that this group of cytokines are potential new markers of remodelling in severe asthma, and further studies on their therapeutic value are necessary.

Abstract

Asthma is a chronic heterogeneous illness of the lower airway with an inflammatory basis, developing from hyperresponsiveness and bronchial obstruction. One of the more unfavourable processes occurring in the airway are the long-term changes of the respiratory tract known as remodelling, resulting in complete irreversible obstruction. Bone morphogenetic protein (BMP) is a member of the Transforming Growth Factor beta (TGF-b) superfamily, which regulates processes in embryonic and post-embryonic development. The role played by BMP is regulation of degradation and remodelling of the extracellular matrix, which is one of the elements involved in the reconstruction of the structure of the bronchi in severe asthma. This paper presents the antagonistic properties of BMP against TGF-b, anti-inflammatory and counteracting fibrosis in the respiratory tract. The current state of knowledge indicates that this group of cytokines are potential new markers of remodelling in severe asthma, and further studies on their therapeutic value are necessary.

Get Citation

Keywords

bone morphogenetic proteins, BMP signalling pathway, inflammation, remodelling, asthma

Supplementary Files (2)
ABSTRACT polish
Download
18KB
Untitled
Download
39KB
About this article
Title

Selected bone morphogenetic proteins — the possibility of their use in the diagnostics and therapy of severe asthma

Journal

Advances in Respiratory Medicine

Issue

Vol 85, No 2 (2017)

Pages

109-115

Published online

2017-04-24

DOI

10.5603/ARM.2017.0017

Bibliographic record

Adv Respir Med 2017;85(2):109-115.

Keywords

bone morphogenetic proteins
BMP signalling pathway
inflammation
remodelling
asthma

Authors

Marcelina Koćwin
Mateusz Jonakowski
Marcelina Przemęcka
Michał Panek
Piotr Kuna

References (51)
  1. Global Initiative for Asthma, http://ginasthma.org/
  2. Wong CK, Ho CY, Ko FW, et al. Proinflammatory cytokines (IL-17, IL-6, IL-18 and IL-12) and Th cytokines (IFN-gamma, IL-4, IL-10 and IL-13) in patients with allergic asthma. Clin Exp Immunol. 2001; 125(2): 177–183.
  3. Krenke R. Astma oskrzelowa — aktualny stan wiedzy. Pulmonologia Med i Pasje. 2009; 2–11.
  4. Hershenson MB, Brown M, Camoretti-Mercado B, et al. Airway smooth muscle in asthma. Annu Rev Pathol. 2008; 3: 523–555.
  5. Stępień-Wyrobiec O, Hrycek A, Wyrobiec G. Transformujący czynnik wzrostu beta (TGF-beta)-budowa, mechanizmy oddziaływania oraz jego rola w patogenezie tocznia rumieniowatego UKładowego. Postepy Hig Med Dosw. 2008; 62: 688–93.
  6. Mokrosiński J, Krajewska WM. Receptory pomocnicze w sygnalizacji TGFβ. Postepy Biochem. 2008; 54(3): 264–73.
  7. Wu MY, Hill CS. Tgf-beta superfamily signaling in embryonic development and homeostasis. Dev Cell. 2009; 16(3): 329–343.
  8. Wozney JM. The bone morphogenetic protein family and osteogenesis. Mol Reprod Dev. 1992; 32(2): 160–167.
  9. Clark RI, Woodcock KJ, Geissmann F, et al. Multiple TGF-β superfamily signals modulate the adult Drosophila immune response. Curr Biol. 2011; 21(19): 1672–1677.
  10. Ahn K, Mishina Y, Hanks MC, et al. BMPR-IA signaling is required for the formation of the apical ectodermal ridge and dorsal-ventral patterning of the limb. Development. 2001; 128(22): 4449–4461.
  11. Vukicevic S, Helder MN, Luyten FP. Developing human lung and kidney are major sites for synthesis of bone morphogenetic protein-3 (osteogenin). J Histochem Cytochem. 1994; 42(7): 869–875.
  12. Bellusci S, Henderson R, Winnier G, et al. Evidence from normal expression and targeted misexpression that bone morphogenetic protein (Bmp-4) plays a role in mouse embryonic lung morphogenesis. Development. 1996; 122(6): 1693–1702.
  13. Wang RN, Green J, Wang Z, et al. Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis. 2014; 1(1): 87–105.
  14. Luu HH, Song WX, Luo X, et al. Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J Orthop Res. 2007; 25(5): 665–677.
  15. Warburton D, Schwarz M, Tefft D, et al. The molecular basis of lung morphogenesis. Mech Dev. 2000; 92(1): 55–81.
  16. Pegorier S, Campbell GA, Kay AB, et al. Bone morphogenetic protein (BMP)-4 and BMP-7 regulate differentially transforming growth factor (TGF)-beta1 in normal human lung fibroblasts (NHLF). Respir Res. 2010; 11: 85.
  17. Chen Di, Zhao M, Mundy GR, et al. Signal transduction and biological functions of bone morphogenetic proteins. Front Biosci. 2004; 9(4): 349–358.
  18. Massagué J, Seoane J, Wotton D. Smad transcription factors. Genes Dev. 2005; 19(23): 2783–2810.
  19. Gingery A, Bradley EW, Pederson L, et al. TGF-beta coordinately activates TAK1/MEK/AKT/NFkB and SMAD pathways to promote osteoclast survival. Exp Cell Res. 2008; 314(15): 2725–2738.
  20. Yoshida Y, Tanaka S, Umemori H, et al. Negative regulation of BMP/Smad signaling by Tob in osteoblasts. Cell. 2000; 103(7): 1085–1097.
  21. Flanders K, Sato M, Ooshima A, Russo A, Roberts A. Smad-3 as a mediator of the fibrotic response. Int J Exp Pathol. 2008; 85(1): A13–A13.
  22. Aoki H, Fujii M, Imamura T, et al. Synergistic effects of different bone morphogenetic protein type I receptors on alkaline phosphatase induction. J Cell Sci. 2001; 114(Pt 8): 1483–1489.
  23. Zwijsen An, Verschueren K, Huylebroeck D. New intracellular components of bone morphogenetic protein/Smad signaling cascades. FEBS Lett. 2003; 546(1): 133–139.
  24. Eivers E, Fuentealba LC, De Robertis EM. Integrating positional information at the level of Smad1/5/8. Curr Opin Genet Dev. 2008; 18(4): 304–310.
  25. van Wijk B, Moorman AFM, van den Hoff MJB. Role of bone morphogenetic proteins in cardiac differentiation. Cardiovasc Res. 2007; 74(2): 244–255.
  26. Allendorph GP, Isaacs MJ, Kawakami Y, et al. BMP-3 and BMP-6 structures illuminate the nature of binding specificity with receptors. Biochemistry. 2007; 46(43): 12238–12247.
  27. Gamer LW, Ho V, Cox K, et al. Expression and function of BMP3 during chick limb development. Dev Dyn. 2008; 237(6): 1691–1698.
  28. Daluiski A, Engstrand T, Bahamonde ME, et al. Bone morphogenetic protein-3 is a negative regulator of bone density. Nat Genet. 2001; 27(1): 84–88.
  29. Sautter NB, Delaney KL, Trune DR. Altered expression of tissue remodeling genes in a mouse model of acute allergic rhinitis. Int Forum Allergy Rhinol. 2011; 1(4): 262–267.
  30. http://omim.org/entry/112262?search=bone%20morphogenetic%20proteins&highlight=protein%20morphogenetic%20bone.
  31. Warburton D, Bellusci S, De Langhe S, et al. Molecular mechanisms of early lung specification and branching morphogenesis. Pediatr Res. 2005; 57(5 Pt 2): 26R–37R.
  32. Hashimoto S, Gon Y, Takeshita I, et al. Transforming growth Factor-beta1 induces phenotypic modulation of human lung fibroblasts to myofibroblast through a c-Jun-NH2-terminal kinase-dependent pathway. Am J Respir Crit Care Med. 2001; 163(1): 152–157.
  33. Jeffery TK, Upton PD, Trembath RC, et al. BMP4 inhibits proliferation and promotes myocyte differentiation of lung fibroblasts via Smad1 and JNK pathways. Am J Physiol Lung Cell Mol Physiol. 2005; 288(2): L370–L378.
  34. Otto TC, Bowers RR, Lane MD. BMP-4 treatment of C3H10T1/2 stem cells blocks expression of MMP-3 and MMP-13. Biochem Biophys Res Commun. 2007; 353(4): 1097–1104.
  35. http://omim.org/entry/112267?search=bone%20morphogenetic%20protein%207&highlight=proteinaceous%20protein%20morphogenetic%20bone%207#4.
  36. Macías-Silva M, Hoodless PA, Tang SJ, et al. Specific activation of Smad1 signaling pathways by the BMP7 type I receptor, ALK2. J Biol Chem. 1998; 273(40): 25628–25636.
  37. Wang S, Hirschberg R. BMP7 antagonizes TGF-beta -dependent fibrogenesis in mesangial cells. Am J Physiol Renal Physiol. 2003; 284(5): F1006–F1013.
  38. Cheng H, Jiang W, Phillips FM, et al. Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg Am. 2003; 85-A(8): 1544–1552.
  39. You L, Kruse FE. Differential effect of activin A and BMP-7 on myofibroblast differentiation and the role of the Smad signaling pathway. Invest Ophthalmol Vis Sci. 2002; 43(1): 72–81.
  40. Klahr S, Morrissey J. Obstructive nephropathy and renal fibrosis: The role of bone morphogenic protein-7 and hepatocyte growth factor. Kidney Int Suppl. 2003(87): S105–S112.
  41. Maric I, Poljak L, Zoricic S, et al. Bone morphogenetic protein-7 reduces the severity of colon tissue damage and accelerates the healing of inflammatory bowel disease in rats. J Cell Physiol. 2003; 196(2): 258–264.
  42. Pieniążek M, Donizy P, Ziętek M. The role of TGF-b -related signal transduction pathways in pathogenesis of cancers. Postępy Hig Med Dośw. 2012; 66: 583–91.
  43. Izumi N, Mizuguchi S, Inagaki Y, et al. BMP-7 opposes TGF-beta1-mediated collagen induction in mouse pulmonary myofibroblasts through Id2. Am J Physiol Lung Cell Mol Physiol. 2006; 290(1): L120–L126.
  44. Płusa T. The importance of small airways inflammation control in the course and therapy of bronchial asthma. Adv Dermatology Allergol Dermatologii i Alergol. 2009; XXVI(5): 354–356.
  45. Lipka D, Boratyński J. Metaloproteinazy MMP. Struktura i funkcja. Postepy Hig Med Dosw. 2008; 62(5): 328–36.
  46. Kraus-Filarska M, Kosińska M, Tomkowicz A. Metalloproteinases and Airway Remodeling in Asthma. Adv Clin Exp Med. 2007; 1(16): 417–423.
  47. Kariyawasam HH, Xanthou G, Barkans J, et al. Basal expression of bone morphogenetic protein receptor is reduced in mild asthma. Am J Respir Crit Care Med. 2008; 177(10): 1074–1081.
  48. Zeisberg M, Hanai Ji, Sugimoto H, et al. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med. 2003; 9(7): 964–968.
  49. Stumm CL, Halcsik E, Landgraf RG, et al. Lung remodeling in a mouse model of asthma involves a balance between TGF-β1 and BMP-7. PLoS One. 2014; 9(4): e95959.
  50. Carreira AC, Lojudice FH, Halcsik E, et al. Bone morphogenetic proteins: facts, challenges, and future perspectives. J Dent Res. 2014; 93(4): 335–345.
  51. Kraunz KS, Nelson HH, Liu M, et al. Interaction between the bone morphogenetic proteins and Ras/MAP-kinase signalling pathways in lung cancer. Br J Cancer. 2005; 93(8): 949–952.

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

Czasopismo Pneumonologia i Alergologia Polska dostęne jest również w Ikamed - księgarnia medyczna

Wydawcą serwisu jest "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail: viamedica@viamedica.pl