open access

Vol 85, No 3 (2017)
REVIEWS
Published online: 2017-06-13
Submitted: 2016-11-17
Accepted: 2017-06-02
Get Citation

Signaling pathways and their miRNA regulators involved in the etiopathology of idiopathic pulmonary fibrosis (IPF) and hypersensitivity pneumonitis (HP)

Justyna Kiszałkiewicz, Wojciech Piotrowski, Ewa Brzeziańska-Lasota
DOI: 10.5603/ARM.2017.0029
·
Adv Respir Med 2017;85(3):169-178.

open access

Vol 85, No 3 (2017)
REVIEWS
Published online: 2017-06-13
Submitted: 2016-11-17
Accepted: 2017-06-02

Abstract

Idiopathic pulmonary fibrosis (IPF) and hypersensitivity pneumonitis (HP) belong to heterogenic group of interstitial lung diseases (ILD). For the reason that this group of diseases present with complex clinical non-specific features, they represent a diagnostic and therapeutic challenge. In this review we focus on several crucial signaling pathways participating in inflammation, fibrosis and EMT processes, so important in the course of ILD: TNF-α/NFκβ, TGF-β/SMAD, Wnt-β-catenin and PI3K-Akt signaling. Moreover, this review summarizes the role of selected signaling pathways and some miRNAs which are their regulators during development and progression of IPF and HP. Recent advances indicate the potential role of miRNAs as a molecular markers differentiating clinical course of ILD.

Abstract

Idiopathic pulmonary fibrosis (IPF) and hypersensitivity pneumonitis (HP) belong to heterogenic group of interstitial lung diseases (ILD). For the reason that this group of diseases present with complex clinical non-specific features, they represent a diagnostic and therapeutic challenge. In this review we focus on several crucial signaling pathways participating in inflammation, fibrosis and EMT processes, so important in the course of ILD: TNF-α/NFκβ, TGF-β/SMAD, Wnt-β-catenin and PI3K-Akt signaling. Moreover, this review summarizes the role of selected signaling pathways and some miRNAs which are their regulators during development and progression of IPF and HP. Recent advances indicate the potential role of miRNAs as a molecular markers differentiating clinical course of ILD.

Get Citation

Keywords

idiopathic pulmonary fibrosis, hypersensitivity pneumonitis, molecular markers, pathogenesis, signaling pathways

About this article
Title

Signaling pathways and their miRNA regulators involved in the etiopathology of idiopathic pulmonary fibrosis (IPF) and hypersensitivity pneumonitis (HP)

Journal

Advances in Respiratory Medicine

Issue

Vol 85, No 3 (2017)

Pages

169-178

Published online

2017-06-13

DOI

10.5603/ARM.2017.0029

Bibliographic record

Adv Respir Med 2017;85(3):169-178.

Keywords

idiopathic pulmonary fibrosis
hypersensitivity pneumonitis
molecular markers
pathogenesis
signaling pathways

Authors

Justyna Kiszałkiewicz
Wojciech Piotrowski
Ewa Brzeziańska-Lasota

References (86)
  1. Horowitz JC, Thannickal VJ. Epithelial-mesenchymal interactions in pulmonary fibrosis. Semin Respir Crit Care Med. 2006; 27(6): 600–612.
  2. Selman M, Pardo A. Idiopathic pulmonary fibrosis: an epithelial/fibroblastic cross-talk disorder. Respir Res. 2002; 3: 3.
  3. Selman M, Pardo A, King TE. Hypersensitivity pneumonitis: insights in diagnosis and pathobiology. Am J Respir Crit Care Med. 2012; 186(4): 314–324.
  4. Coultas DB, Hughes MP. Accuracy of mortality data for interstitial lung diseases in New Mexico, USA. Thorax. 1996; 51(7): 717–720.
  5. Karakatsani A, Papakosta D, Rapti A, et al. Hellenic Interstitial Lung Diseases Group. Epidemiology of interstitial lung diseases in Greece. Respir Med. 2009; 103(8): 1122–1129.
  6. Ley B, Collard HR. Epidemiology of idiopathic pulmonary fibrosis. Clin Epidemiol. 2013; 5: 483–492.
  7. Gait R, Maginnis C, Lewis S, et al. Occupational exposure to metal or wood dust and aetiology of cryptogenic fibrosing alveolitis. Lancet. 1996; 347(8997): 284–289.
  8. Baumgartner KB, Samet JM, Stidley CA, et al. Cigarette smoking: a risk factor for idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 1997; 155(1): 242–248.
  9. Yan Z, Kui Z, Ping Z. Reviews and prospectives of signaling pathway analysis in idiopathic pulmonary fibrosis. Autoimmun Rev. 2014; 13(10): 1020–1025.
  10. Selman M, King TE, Pardo A, et al. American Thoracic Society, European Respiratory Society, American College of Chest Physicians. Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med. 2001; 134(2): 136–151.
  11. Todd NW, Luzina IG, Atamas SP. Molecular and cellular mechanisms of pulmonary fibrosis. Fibrogenesis Tissue Repair. 2012; 5(1): 11.
  12. Malmberg P, Rask-Andersen A, Höglund S, et al. Incidence of organic dust toxic syndrome and allergic alveolitis in Swedish farmers. Int Arch Allergy Appl Immunol. 1988; 87(1): 47–54.
  13. Calvert JE, Baldwin CI, Allen A, et al. Pigeon fanciers' lung: a complex disease? Clin Exp Allergy. 1999; 29(2): 166–175.
  14. May JJ, Stallones L, Darrow D, et al. Organic dust toxicity (pulmonary mycotoxicosis) associated with silo unloading. Thorax. 1986; 41(12): 919–923.
  15. Bourke SJ, Dalphin JC, Boyd G, et al. Hypersensitivity pneumonitis: current concepts. Eur Respir J Suppl. 2001; 32: 81s–92s.
  16. Aquino-Galvez A, Camarena A, Montaño M, et al. Transporter associated with antigen processing (TAP) 1 gene polymorphisms in patients with hypersensitivity pneumonitis. Exp Mol Pathol. 2008; 84(2): 173–177.
  17. Bringardner BD, Baran CP, Eubank TD, et al. The role of inflammation in the pathogenesis of idiopathic pulmonary fibrosis. Antioxid Redox Signal. 2008; 10(2): 287–301.
  18. Gibson K, Kaminski N. The mechanisms of idiopathic pulmonary fibrosis: can we see the elephant? Drug Discovery Today: Disease Mechanisms. 2004; 1(1): 117–122.
  19. Denis M. Proinflammatory cytokines in hypersensitivity pneumonitis. Am J Respir Crit Care Med. 1995; 151: 164–169.
  20. Kim JM, Rasmussen JP, Rudensky AY. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol. 2007; 8(2): 191–197.
  21. Barrera L, Mendoza F, Zuñiga J, et al. Functional diversity of T-cell subpopulations in subacute and chronic hypersensitivity pneumonitis. Am J Respir Crit Care Med. 2008; 177(1): 44–55.
  22. Bonizzi G, Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 2004; 25(6): 280–288.
  23. Gilmore TD. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene. 2006; 25(51): 6680–6684.
  24. Ding WX, Yin XM. Dissection of the multiple mechanisms of TNF-alpha-induced apoptosis in liver injury. J Cell Mol Med. 2004; 8(4): 445–454.
  25. Muenchen HJ, Lin DL, Walsh MA, et al. Tumor necrosis factor-alpha-induced apoptosis in prostate cancer cells through inhibition of nuclear factor-kappaB by an IkappaBalpha "super-repressor". Clin Cancer Res. 2000; 6(5): 1969–1977.
  26. Mukhopadhyay S, Hoidal JR, Mukherjee TK. Role of TNFalpha in pulmonary pathophysiology. Respir Res. 2006; 7: 125.
  27. Schaaf BM, Seitzer U, Pravica V, et al. Tumor necrosis factor-alpha -308 promoter gene polymorphism and increased tumor necrosis factor serum bioactivity in farmer's lung patients. Am J Respir Crit Care Med. 2001; 163(2): 379–382.
  28. Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest. 2001; 107(2): 135–142.
  29. Gou Si, Zhu T, Wang W, et al. Glucagon like peptide-1 attenuates bleomycin-induced pulmonary fibrosis, involving the inactivation of NF-κB in mice. Int Immunopharmacol. 2014; 22(2): 498–504.
  30. Alvira CM. Nuclear factor-kappa-B signaling in lung development and disease: one pathway, numerous functions. Birth Defects Res A Clin Mol Teratol. 2014; 100(3): 202–216.
  31. King TE, Schwarz MI, Brown K, et al. Idiopathic pulmonary fibrosis: relationship between histopathologic features and mortality. Am J Respir Crit Care Med. 2001; 164(6): 1025–1032.
  32. Bartis D, Mise N, Mahida RY, et al. Epithelial-mesenchymal transition in lung development and disease: does it exist and is it important? Thorax. 2014; 69(8): 760–765.
  33. Chapman HA. Epithelial-mesenchymal interactions in pulmonary fibrosis. Annu Rev Physiol. 2011; 73: 413–435.
  34. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009; 119(6): 1420–1428.
  35. Yasui M, Miyazaki Y, Mitaka K, et al. Epithelial-mesenchymal transition in chronic hypersensitivity pneumonitis. J Med Dent Sci. 2012; 59(1): 29–41.
  36. Shi K, Jiang J, Ma T, et al. Pathogenesis pathways of idiopathic pulmonary fibrosis in bleomycin-induced lung injury model in mice. Respir Physiol Neurobiol. 2014; 190: 113–117.
  37. Yang YC, Piek E, Zavadil J, et al. Hierarchical model of gene regulation by transforming growth factor beta. Proc Natl Acad Sci U S A. 2003; 100(18): 10269–10274.
  38. von Gersdorff G, Susztak K, Rezvani F, et al. Smad3 and Smad4 mediate transcriptional activation of the human Smad7 promoter by transforming growth factor beta. J Biol Chem. 2000; 275(15): 11320–11326.
  39. Ohashi N, Yamamoto T, Uchida C, et al. Transcriptional induction of Smurf2 ubiquitin ligase by TGF-beta. FEBS Lett. 2005; 579(12): 2557–2563.
  40. Zhao J, Crowe DL, Castillo C, et al. Smad7 is a TGF-beta-inducible attenuator of Smad2/3-mediated inhibition of embryonic lung morphogenesis. Mech Dev. 2000; 93(1-2): 71–81.
  41. Noble PW, Barkauskas CE, Jiang D. Pulmonary fibrosis: patterns and perpetrators. J Clin Invest. 2012; 122(8): 2756–2762.
  42. Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB J. 2004; 18(7): 816–827.
  43. Furukawa F, Matsuzaki K, Mori S, et al. p38 MAPK mediates fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts. Hepatology. 2003; 38(4): 879–889.
  44. Yoshida K, Matsuzaki K, Mori S, et al. Transforming growth factor-beta and platelet-derived growth factor signal via c-Jun N-terminal kinase-dependent Smad2/3 phosphorylation in rat hepatic stellate cells after acute liver injury. Am J Pathol. 2005; 166(4): 1029–1039.
  45. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003; 425(6958): 577–584.
  46. Duncan MR, Frazier KS, Abramson S, et al. Connective tissue growth factor mediates transforming growth factor beta-induced collagen synthesis: down-regulation by cAMP. FASEB J. 1999; 13(13): 1774–1786.
  47. Abreu JG, Ketpura NI, Reversade B, et al. Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta. Nat Cell Biol. 2002; 4(8): 599–604.
  48. Moussad EE, Brigstock DR. Connective tissue growth factor: what's in a name? Mol Genet Metab. 2000; 71(1-2): 276–292.
  49. Yu CC, Hsu MJ, Kuo ML, et al. Thrombin-induced connective tissue growth factor expression in human lung fibroblasts requires the ASK1/JNK/AP-1 pathway. J Immunol. 2009; 182(12): 7916–7927.
  50. Ohnishi H, Oka T, Kusachi S, et al. Increased expression of connective tissue growth factor in the infarct zone of experimentally induced myocardial infarction in rats. J Mol Cell Cardiol. 1998; 30(11): 2411–2422.
  51. Kennedy L, Liu S, Shi-Wen Xu, et al. CCN2 is necessary for the function of mouse embryonic fibroblasts. Exp Cell Res. 2007; 313(5): 952–964.
  52. Lasky JA, Ortiz LA, Tonthat B, et al. Connective tissue growth factor mRNA expression is upregulated in bleomycin-induced lung fibrosis. Am J Physiol. 1998; 275(2 Pt 1): L365–L371.
  53. Pan LH, Yamauchi K, Uzuki M, et al. Type II alveolar epithelial cells and interstitial fibroblasts express connective tissue growth factor in IPF. Eur Respir J. 2001; 17(6): 1220–1227.
  54. Igarashi A, Nashiro K, Kikuchi K, et al. Connective tissue growth factor gene expression in tissue sections from localized scleroderma, keloid, and other fibrotic skin disorders. J Invest Dermatol. 1996; 106(4): 729–733.
  55. Semenzato G, Adami F, Maschio N, et al. Immune mechanisms in interstitial lung diseases. Allergy. 2000; 55(12): 1103–1120.
  56. Panek M, Pietras T, Fabijan A, et al. The NR3C1 Glucocorticoid Receptor Gene Polymorphisms May Modulate the TGF-beta mRNA Expression in Asthma Patients. Inflammation. 2015; 38(4): 1479–1492.
  57. Nho RS, Xia H, Diebold D, et al. PTEN regulates fibroblast elimination during collagen matrix contraction. J Biol Chem. 2006; 281(44): 33291–33301.
  58. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004; 20: 781–810.
  59. Mucenski ML, Wert SE, Nation JM, et al. beta-Catenin is required for specification of proximal/distal cell fate during lung morphogenesis. J Biol Chem. 2003; 278(41): 40231–40238.
  60. Shu W, Guttentag S, Wang Z, et al. Wnt/beta-catenin signaling acts upstream of N-myc, BMP4, and FGF signaling to regulate proximal-distal patterning in the lung. Dev Biol. 2005; 283(1): 226–239.
  61. Chilosi M, Poletti V, Zamò A, et al. Aberrant Wnt/beta-catenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol. 2003; 162(5): 1495–1502.
  62. Cheon SS, Nadesan P, Poon R, et al. Growth factors regulate beta-catenin-mediated TCF-dependent transcriptional activation in fibroblasts during the proliferative phase of wound healing. Exp Cell Res. 2004; 293(2): 267–274.
  63. Morali OG, Delmas V, Moore R, et al. IGF-II induces rapid beta-catenin relocation to the nucleus during epithelium to mesenchyme transition. Oncogene. 2001; 20(36): 4942–4950.
  64. Königshoff M, Balsara N, Pfaff EM, et al. Functional Wnt signaling is increased in idiopathic pulmonary fibrosis. PLoS One. 2008; 3(5): e2142.
  65. Lam AP, Flozak AS, Russell S, et al. Nuclear β-catenin is increased in systemic sclerosis pulmonary fibrosis and promotes lung fibroblast migration and proliferation. Am J Respir Cell Mol Biol. 2011; 45(5): 915–922.
  66. Caraci F, Gili E, Calafiore M, et al. TGF-beta1 targets the GSK-3beta/beta-catenin pathway via ERK activation in the transition of human lung fibroblasts into myofibroblasts. Pharmacol Res. 2008; 57(4): 274–282.
  67. Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009; 9(8): 581–593.
  68. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, et al. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A. 2010; 107(14): 6328–6333.
  69. Zeng Y. Principles of micro-RNA production and maturation. Oncogene. 2006; 25(46): 6156–6162.
  70. Tomankova T, Petrek M, Kriegova E. Involvement of microRNAs in physiological and pathological processes in the lung. Respir Res. 2010; 11: 159.
  71. Perry MM, Moschos SA, Williams AE, et al. Rapid changes in microRNA-146a expression negatively regulate the IL-1beta-induced inflammatory response in human lung alveolar epithelial cells. J Immunol. 2008; 180(8): 5689–5698.
  72. Banerjee A, Schambach F, DeJong CS, et al. Micro-RNA-155 inhibits IFN-gamma signaling in CD4+ T cells. Eur J Immunol. 2010; 40(1): 225–231.
  73. Izzotti A, Calin GA, Steele VE, et al. Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke. FASEB J. 2009; 23(3): 806–812.
  74. Imaizumi T, Tanaka H, Tajima A, et al. IFN-γ and TNF-α synergistically induce microRNA-155 which regulates TAB2/IP-10 expression in human mesangial cells. Am J Nephrol. 2010; 32(5): 462–468.
  75. Xiao X, Huang C, Zhao C, et al. Regulation of myofibroblast differentiation by miR-424 during epithelial-to-mesenchymal transition. Arch Biochem Biophys. 2015; 566: 49–57.
  76. Pandit KV, Corcoran D, Yousef H, et al. Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2010; 182(2): 220–229.
  77. Das S, Kumar M, Negi V, et al. MicroRNA-326 regulates profibrotic functions of transforming growth factor-β in pulmonary fibrosis. Am J Respir Cell Mol Biol. 2014; 50(5): 882–892.
  78. Milosevic J, Pandit K, Magister M, et al. Profibrotic role of miR-154 in pulmonary fibrosis. Am J Respir Cell Mol Biol. 2012; 47(6): 879–887.
  79. Wang Y, Huang C, Reddy Chintagari N, et al. miR-375 regulates rat alveolar epithelial cell trans-differentiation by inhibiting Wnt/β-catenin pathway. Nucleic Acids Res. 2013; 41(6): 3833–3844.
  80. Lino Cardenas CL, Henaoui IS, Courcot E, et al. miR-199a-5p Is upregulated during fibrogenic response to tissue injury and mediates TGFbeta-induced lung fibroblast activation by targeting caveolin-1. PLoS Genet. 2013; 9(2): e1003291.
  81. Liu G, Friggeri A, Yang Y, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med. 2010; 207(8): 1589–1597.
  82. Pottier N, Maurin T, Chevalier B, et al. Identification of keratinocyte growth factor as a target of microRNA-155 in lung fibroblasts: implication in epithelial-mesenchymal interactions. PLoS One. 2009; 4(8): e6718.
  83. Marquez RT, Wendlandt E, Galle CS, et al. MicroRNA-21 is upregulated during the proliferative phase of liver regeneration, targets Pellino-1, and inhibits NF-kappaB signaling. Am J Physiol Gastrointest Liver Physiol. 2010; 298(4): G535–G541.
  84. Dakhlallah D, Batte K, Wang Y, et al. Epigenetic regulation of miR-17~92 contributes to the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med. 2013; 187(4): 397–405.
  85. Bracken CP, Gregory PA, Kolesnikoff N, et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 2008; 68(19): 7846–7854.
  86. Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008; 10(5): 593–601.

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

Czasopismo Pneumonologia i Alergologia Polska dostęne jest również w Ikamed - księgarnia medyczna

Wydawcą serwisu jest "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail: viamedica@viamedica.pl