open access

Vol 77, No 1 (2009)
REVIEWS
Published online: 2008-12-19
Submitted: 2013-02-22
Get Citation

Angiogenesis in interstitial lung diseases

Tadeusz M. Zielonka
Pneumonol Alergol Pol 2009;77(1):52-60.

open access

Vol 77, No 1 (2009)
REVIEWS
Published online: 2008-12-19
Submitted: 2013-02-22

Abstract

Interstitial lung diseases (ILD) constitute a large group of disorders characterized by various etiology and pathogenesis. Inflammation and pulmonary fibrosis are the most important processes in the course of ILD. Disease causes the decrease of the gas diffusion in the lungs and provokes hypoxia. Chronic inflammation and hypoxia are strong stimulus of neovascularization. Neoangiogenesis is a principal response of vessels to inflammation. The critical importance of tumor angiogenesis in the development and metastatic spread of tumors is proved. Relations of ILD with neoplasma have been observed. Neovascularization takes an important role in wound healing allowing the cells to flow into damaged structures. Recently, pulmonary fibrosis has been deemed to result from abnormal wound healing in the lung in response to injury to the alveolar epithelium. Angiogenesis participates in pathogenesis of idiopathic pulmonary fibrosis. More and more data suggest the role of angiogenesis in pathogenesis of other ILDs, such as granulomatosis, fibrosis and vasculitis. The mechanism of angiogenesis in ILD is not clear yet. New data concerning participation of neoangiogenesis in pathogenesis of ILD created target for new drugs. Thalidomide, a strong antiangiogenic drug was used successfully in the some cases of ILD.

Abstract

Interstitial lung diseases (ILD) constitute a large group of disorders characterized by various etiology and pathogenesis. Inflammation and pulmonary fibrosis are the most important processes in the course of ILD. Disease causes the decrease of the gas diffusion in the lungs and provokes hypoxia. Chronic inflammation and hypoxia are strong stimulus of neovascularization. Neoangiogenesis is a principal response of vessels to inflammation. The critical importance of tumor angiogenesis in the development and metastatic spread of tumors is proved. Relations of ILD with neoplasma have been observed. Neovascularization takes an important role in wound healing allowing the cells to flow into damaged structures. Recently, pulmonary fibrosis has been deemed to result from abnormal wound healing in the lung in response to injury to the alveolar epithelium. Angiogenesis participates in pathogenesis of idiopathic pulmonary fibrosis. More and more data suggest the role of angiogenesis in pathogenesis of other ILDs, such as granulomatosis, fibrosis and vasculitis. The mechanism of angiogenesis in ILD is not clear yet. New data concerning participation of neoangiogenesis in pathogenesis of ILD created target for new drugs. Thalidomide, a strong antiangiogenic drug was used successfully in the some cases of ILD.
Get Citation

Keywords

interstitial lung diseases; pathogenesis; angiogenesis

About this article
Title

Angiogenesis in interstitial lung diseases

Journal

Advances in Respiratory Medicine

Issue

Vol 77, No 1 (2009)

Pages

52-60

Published online

2008-12-19

Bibliographic record

Pneumonol Alergol Pol 2009;77(1):52-60.

Keywords

interstitial lung diseases
pathogenesis
angiogenesis

Authors

Tadeusz M. Zielonka

References (138)
  1. Demedts M, Wells AU, Antó JM, et al. Interstitial lung diseases: an epidemiological overview. Eur Respir J Suppl. 2001; 32: 2s–16s.
  2. De Vuyst P, Camus P. The past and present of pneumoconioses. Curr Opin Pulm Med. 2000; 6(2): 151–156.
  3. Jacobs RL, Andrews CP, Coalson J. Organic antigen-induced interstitial lung disease: diagnosis and management. Ann Allergy Asthma Immunol. 2002; 88(1): 30–41.
  4. Camus PH, Foucher P, Bonniaud PH, et al. Drug-induced infiltrative lung disease. Eur Respir J Suppl. 2001; 32: 93s–113s.
  5. Rancati T, Ceresoli GL, Gagliardi G, et al. Factors predicting radiation pneumonitis in lung cancer patients: a retrospective study. Radiother Oncol. 2003; 67(3): 275–283.
  6. Lamblin C, Bergoin C, Saelens T, et al. Interstitial lung diseases in collagen vascular diseases. Eur Respir J Suppl. 2001; 32: 69s–80s.
  7. Chernick V. Interstitial lung disease in children: an overview. Pediatr Pulmonol Suppl. 1999; 18: 30–38.
  8. Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment. American Journal of Respiratory and Critical Care Medicine. 2000; 161(2): 646–664.
  9. ATS/ERS/WASOG. Statement on sarcoidosis. Sarcoidosis Vasc. Diffuse Lung Dis. 1999; 16: 149–173.
  10. Coultas DB, Zumwalt RE, Black WC, et al. The epidemiology of interstitial lung diseases. Am J Respir Crit Care Med. 1994; 150(4): 967–972.
  11. Wells AU, Rubens MB, du Bois RM, et al. Functional impairment in fibrosing alveolitis: relationship to reversible disease on thin section computed tomography. Eur Respir J. 1997; 10(2): 280–285.
  12. Semenza GL. Involvement of hypoxia-inducible factor 1 in pulmonary pathophysiology. Chest. 2005; 128(6 Suppl): 592S–594S.
  13. Wagner EM, Sánchez J, McClintock JY, et al. Inflammation and ischemia-induced lung angiogenesis. Am J Physiol Lung Cell Mol Physiol. 2008; 294(2): L351–L357.
  14. Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol. 1995; 11: 73–91.
  15. Risau W. Mechanisms of angiogenesis. Nature. 1997; 386(6626): 671–674.
  16. Hazzard TM, Stouffer RL. Angiogenesis in ovarian follicular and luteal development. Baillieres Best Pract Res Clin Obstet Gynaecol. 2000; 14(6): 883–900.
  17. Smith SK. Angiogenesis and implantation . Hum Reprod. 2000; 15(supl. 6): 59–66.
  18. Hudlicka O, Brown MD, Milkiewicz M, et al. Angiogenesis in skeletal and cardiac muscle. Physiol Rev. 1992; 72(2): 369–417.
  19. Lingen MW. Role of leukocytes and endothelial cells in the development of angiogenesis in inflammation and wound healing. Arch Pathol Lab Med. 2001; 125(1): 67–71.
  20. Hansen-Smith F, Morris L. Patterns of Physiological Angiogenesis in Adult Mesentery. Angiogenesis. 1998: 75–84.
  21. Goldmann E. THE GROWTH OF MALIGNANT DISEASE IN MAN AND THE LOWER ANIMALS, The Lancet. 1907; 170(4392): 1236–1240.
  22. Kerbel RS. Tumor angiogenesis: past, present and the near future. Carcinogenesis. 2000; 21(3): 505–515.
  23. Carmeliet P, Jain RK, Carmeliet P, et al. Angiogenesis in cancer and other diseases. Nature. 2000; 407(6801): 249–257.
  24. Pepper MS, Mandriota SJ, Vassalli JD, et al. Angiogenesis-Regulating Cytokines: Activities and Interactions. Current Topics in Microbiology and Immunology. 1996: 31–67.
  25. Folkman J, Brem H. Angiogenesis and inflammation. Inflammation. In: Gallin JI, Goldstein IM, Snyderman R. ed. Basic Principles and Clinical Correlates. Second Edition. Raven Press Ltd , New York : 821–839.
  26. Agostini C, Semenzato G. Cytokines in sarcoidosis. Semin Respir Infect. 1998; 13(3): 184–196.
  27. Yoshida S, Ono M, Shono T, et al. Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis. Molecular and Cellular Biology. 1997; 17(7): 4015–4023.
  28. DiPietro LA. Thrombospondin as a regulator of angiogenesis. Experientia Supplementum. 1997: 295–314.
  29. Griffioen AW, Molema G. Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev. 2000; 52(2): 237–268.
  30. Keane MP, Strieter RM. The importance of balanced pro-inflammatory and anti-inflammatory mechanisms in diffuse lung disease. Respir Res. 2002; 3: 5–11.
  31. Strieter R. Pathogenesis and Natural History of Usual Interstitial Pneumonia. Chest. 2005; 128(5): 526–532.
  32. TURNER-WARWICK M. PRECAPILLARY SYSTEMIC-PULMONARY ANASTOMOSES. Thorax. 1963; 18: 225–237.
  33. Peão MN, Aguas AP, de Sá CM, et al. Neoformation of blood vessels in association with rat lung fibrosis induced by bleomycin. Anat Rec. 1994; 238(1): 57–67.
  34. Zielonka TM, Demkow U, Kowalski J, et al. Ocena aktywności angiogennej surowic chorych na śródmiąższowe choroby płuc. Pneumonol Alergol Pol. 1997; 65: 754–760.
  35. Zielonka TM, Demkow U, Filewska M, et al. Angiogenic activity of sera from interstitial lung diseases patients to IL-6, IL-8, IL-12 and TNFa serum level. Centr Eur J Immunol. 2007; 32: 53–60.
  36. Zielonka TM, Demkow U, Szopiński J, et al. Modulacja angiogenezy przez surowice chorych na śródmiąższowe choroby płuc (ILD) w zależności od poziomu ACE, IL-6 i IL-8. Pneumonol Alergol Pol. 1998; 68(supl. 2): 51.
  37. Keane MP, Arenberg DA, Lynch JP, et al. The CXC chemokines, IL-8 and IP-10, regulate angiogenic activity in idiopathic pulmonary fibrosis. J Immunol. 1997; 159(3): 1437–1443.
  38. Keane MP, Belperio JA, Moore TA, et al. Neutralization of the CXC chemokine, macrophage inflammatory protein-2, attenuates bleomycin-induced pulmonary fibrosis. J Immunol. 1999; 162(9): 5511–5518.
  39. Renzoni EA, Walsh DA, Salmon M, et al. Interstitial vascularity in fibrosing alveolitis. Am J Respir Crit Care Med. 2003; 167(3): 438–443.
  40. Ebina M, Shimizukawa M, Shibata N, et al. Heterogeneous increase in CD34-positive alveolar capillaries in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2004; 169(11): 1203–1208.
  41. Selman M, King TE, Pardo A, et al. American Thoracic Society, European Respiratory Society, American College of Chest Physicians. Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med. 2001; 134(2): 136–151.
  42. Aubry MC, Myers JL, Douglas WW, et al. Primary pulmonary carcinoma in patients with idiopathic pulmonary fibrosis. Mayo Clin Proc. 2002; 77(8): 763–770.
  43. Folkman J, Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971; 285(21): 1182–1186.
  44. Artinian V, Kvale PA. Cancer and interstitial lung disease. Curr Opin Pulm Med. 2004; 10(5): 425–434.
  45. Tzouvelekis A, Anevlavis S, Bouros D. Angiogenesis in interstitial lung diseases: a pathogenetic hallmark or a bystander? Respir Res. 2006; 7: 82.
  46. Koyama S, Sato E, Haniuda M, et al. Decreased level of vascular endothelial growth factor in bronchoalveolar lavage fluid of normal smokers and patients with pulmonary fibrosis. Am J Respir Crit Care Med. 2002; 166(3): 382–385.
  47. Meyer KC, Cardoni A, Xiang ZZ. Vascular endothelial growth factor in bronchoalveolar lavage from normal subjects and patients with diffuse parenchymal lung disease. J Lab Clin Med. 2000; 135(4): 332–338.
  48. Simler NR, Brenchley PE, Horrocks AW, et al. Angiogenic cytokines in patients with idiopathic interstitial pneumonia. Thorax. 2004; 59(7): 581–585.
  49. Zielonka TM, Demkow U, Filewska M, et al. Modulatory effect of sera from patients with various types of pulmonary fibrosis on mononuclear cells-induced angiogenesis in relation to pulmonary function. J Physiol Pharmacol. 2008; 59(supl. 6): 771–779.
  50. Zielonka TM, Demkow U, Filewska M, et al. Relationships between angiogenic activity of sera from interstitial lung disease (ILD) patients and lung function tests. Eur Respir J. 2002; 20(supl. 38): 106.
  51. Keane MP, Belperio JA, Arenberg DA, et al. IFN-gamma-inducible protein-10 attenuates bleomycin-induced pulmonary fibrosis via inhibition of angiogenesis. J Immunol. 1999; 163(10): 5686–5692.
  52. Burdick MD, Murray LA, Keane MP, et al. CXCL11 attenuates bleomycin-induced pulmonary fibrosis via inhibition of vascular remodeling. Am J Respir Crit Care Med. 2005; 171(3): 261–268.
  53. Interstitial lung disease (ILD). SpringerReference. .
  54. KING T, TOOZE J, SCHWARZ M, et al. Predicting Survival in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine. 2001; 164(7): 1171–1181.
  55. Lappi-Blanco E, Soini Y, Kinnula V, et al. VEGF and bFGF are highly expressed in intraluminal fibromyxoid lesions in bronchiolitis obliterans organizing pneumonia. J Pathol. 2002; 196(2): 220–227.
  56. Belperio JA, Keane MP, Burdick MD, et al. Critical role for CXCR3 chemokine biology in the pathogenesis of bronchiolitis obliterans syndrome. J Immunol. 2002; 169(2): 1037–1049.
  57. Lappi-Blanco E, Kaarteenaho-Wiik R, Soini Y, et al. Intraluminal fibromyxoid lesions in bronchiolitis obliterans organizing pneumonia are highly capillarized. Hum Pathol. 1999; 30(10): 1192–1196.
  58. Zielonka TM, Demkow U, Filewska M, et al. Angiogeneza a choroby śródmiąższowe płuc. Pneumonol Alergol Pol. 2001; 69: 491–492.
  59. Tachihara A, Jin E, Matsuoka T, et al. Critical roles of capillary endothelial cells for alveolar remodeling in nonspecific and usual interstitial pneumonias. J Nippon Med Sch. 2006; 73(4): 203–213.
  60. Nakayama S, Mukae H, Ishii H, et al. Comparison of BALF concentrations of ENA-78 and IP10 in patients with idiopathic pulmonary fibrosis and nonspecific interstitial pneumonia. Respir Med. 2005; 99(9): 1145–1151.
  61. Mossman BT, Churg A. Mechanisms in the pathogenesis of asbestosis and silicosis. Am J Respir Crit Care Med. 1998; 157(5 Pt 1): 1666–1680.
  62. Weill H, McDonald JC. Exposure to crystalline silica and risk of lung cancer: the epidemiological evidence. Thorax. 1996; 51(1): 97–102.
  63. Zielonka TM, Demkow U, Filewska M, et al. Angiogenic activity of sera from silicosis and pulmonary Langerhans cell histiocytosis patients in relation to lung function tests. J Physiol Pharmacol. 2008; 59 Suppl 6: 781–789.
  64. Brody AR. Occupational lung disease and the role of peptide growth factors. Curr Opin Pulm Med. 1997; 3(3): 203–208.
  65. Borm PJ, Schins RP. Genotype and phenotype in susceptibility to coal workers' pneumoconiosis. the use of cytokines in perspective. Eur Respir J Suppl. 2001; 32: 127s–133s.
  66. Szekanecz Z, Szegedi G, Koch AE. Angiogenesis in rheumatoid arthritis. J Invest Med. 1998; 46: 27–41.
  67. Detmar M, Brown LF, Claffey KP, et al. Overexpression of vascular permeability factor/vascular endothelial growth factor and its receptors in psoriasis. J Exp Med. 1994; 180(3): 1141–1146.
  68. Distler O, Del Rosso A, Giacomelli R, et al. Angiogenic and angiostatic factors in systemic sclerosis: increased levels of vascular endothelial growth factor are a feature of the earliest disease stages and are associated with the absence of fingertip ulcers. Arthritis Res. 2002; 4(6): R11.
  69. Wells AU. Lung disease in association with connective tissue diseases. D Oliveri, R M du Bois Interstitial Lung Diseases Eur Respir Mon. 2000; 14: 137–146.
  70. Firestein GS. Starving the synovium: angiogenesis and inflammation in rheumatoid arthritis. J Clin Invest. 1999; 103(1): 3–4.
  71. Hirohata S, Sakakibara J. Angioneogenesis as a possible elusive triggering factor in rheumatoid arthritis. Lancet. 1999; 353(9161): 1331.
  72. Koch AE, Harlow LA, Haines GK, et al. Vascular endothelial growth factor. A cytokine modulating endothelial function in rheumatoid arthritis. J Immunol. 1994; 152(8): 4149–4156.
  73. Ballara S, Taylor PC, Reusch P, et al. Raised serum vascular endothelial growth factor levels are associated with destructive change in inflammatory arthritis. Arthritis Rheum. 2001; 44(9): 2055–2064.
  74. Miotla J, Maciewicz R, Kendrew J, et al. Treatment with soluble VEGF receptor reduces disease severity in murine collagen-induced arthritis. Lab Invest. 2000; 80(8): 1195–1205.
  75. Szekanecz Z, Koch A. Chemokines and angiogenesis. Current Opinion in Rheumatology. 2001; 13(3): 202–208.
  76. Koch AE, Kunkel SL, Harlow LA, et al. Epithelial neutrophil activating peptide-78: a novel chemotactic cytokine for neutrophils in arthritis. J Clin Invest. 1994; 94(3): 1012–1018.
  77. Szekanecz Z, Koch AE. Angiogenesis in rheumatoid arthritis. GM Rubanyi. Angiogenesis in health and disease. Marcel Dekker New York, Basel. ; 2000: 429–450.
  78. Janssen BA, Luqmani RA, Gordon C, et al. Correlation of blood levels of soluble vascular cell adhesion molecule-1 with disease activity in systemic lupus erythematosus and vasculitis. Br J Rheumatol. 1994; 33(12): 1112–1116.
  79. Narumi S, Takeuchi T, Kobayashi Y, et al. Serum levels of ifn-inducible PROTEIN-10 relating to the activity of systemic lupus erythematosus. Cytokine. 2000; 12(10): 1561–1565.
  80. Walchner M, Meurer M, Plewig G, et al. Clinical and immunologic parameters during thalidomide treatment of lupus erythematosus. Int J Dermatol. 2000; 39(5): 383–388.
  81. Zielonka TM, Demkow U, Zycinska K, et al. Angiogenic activity of sera from patients with systemic autoimmune diseases in relation to clinical, radiological, and functional pulmonary status. J Physiol Pharmacol. 2008; 59 Suppl 6: 791–800.
  82. Zielonka TM, Demkow U, Filewska M, et al. Angiogenic properties of sera from patients with chronic inflammatory disorders (CID). Allergy Clin Immunol. ; 2000(supl. 2): 220–221.
  83. Adams EM, Kirkley J, Eidelman G, et al. The predominance of beta (CC) chemokine transcripts in idiopathic inflammatory muscle diseases. Proc Assoc Am Physicians. 1997; 109(3): 275–285.
  84. Liprandi A, Bartoli C, Figarella-Branger D, et al. Local expression of monocyte chemoattractant protein-1 (MCP-1) in idiopathic inflammatory myopathies. Acta Neuropathol. 1999; 97(6): 642–648.
  85. Polakowski IJ, Majewski S, Skopińska-Rózewska E, et al. Modulatory effect of sera from scleroderma patients on lymphocyte-induced angiogenesis. Arthritis Rheum. 1985; 28(10): 1133–1139.
  86. Kaminski M, Majewski S, Jablonska S, et al. Lowered Angiogeneic Capability of Peripheral Blood Lymphocytes in Progressive Systemic Sclerosis (Scleroderma). Journal of Investigative Dermatology. 1984; 82(3): 239–243.
  87. Polakowski IJ, Majewski S, Skopińska-Rózewska E, et al. Modulatory effect of sera from scleroderma patients on lymphocyte-induced angiogenesis. II. Effector cells for the enhancing effect of acroscleroderma patients' sera. Arch Dermatol Res. 1988; 280(7): 395–398.
  88. Marczak M, Majewski S, Skopińska-Rózewska E, et al. Enhanced angiogenic capability of monocyte-enriched mononuclear cell suspensions from patients with systemic scleroderma. J Invest Dermatol. 1986; 86(4): 355–358.
  89. Konttinen YT, Mackiewicz Z, Ruuttila P, et al. Vascular damage and lack of angiogenesis in systemic sclerosis skin. Clinical Rheumatology. 2003; 22(3): 196–202.
  90. Serum concentrations of vascular endothelial growth factor in collagen diseases. British Journal of Dermatology. 2002; 139(6): 1049–1051.
  91. Mackiewicz Z, Sukura A, Povilenaité D, et al. Increased but imbalanced expression of VEGF and its receptors has no positive effect on angiogenesis in systemic sclerosis skin. Clin Exp Rheumatol. 2002; 20(5): 641–646.
  92. Zielonka TM, Demkow U, Puscinska E, et al. TNFalpha and INFgamma inducing capacity of sera from patients with interstitial lung disease in relation to its angiogenesis activity. J Physiol Pharmacol. 2007; 58 Suppl 5(Pt 2): 767–780.
  93. Hebbar M, Peyrat JP, Hornez L, et al. Increased concentrations of the circulating angiogenesis inhibitor endostatin in patients with systemic sclerosis. Arthritis Rheum. 2000; 43(4): 889–893.
  94. D'Alessio S, Fibbi G, Cinelli M, et al. Matrix metalloproteinase 12-dependent cleavage of urokinase receptor in systemic sclerosis microvascular endothelial cells results in impaired angiogenesis. Arthritis Rheum. 2004; 50(10): 3275–3285.
  95. Giusti B, Serratì S, Margheri F, et al. The antiangiogenic tissue kallikrein pattern of endothelial cells in systemic sclerosis. Arthritis Rheum. 2005; 52(11): 3618–3628.
  96. Giusti B, Fibbi G, Margheri F. A model of anti-angiogenesis: differential transcriptosome profiling of microvascular endothelial cells from diffuse systemic sclerosis patients. Arthritis Res. Her. 2006; 8.
  97. Brahn E, Lehman TJ, Peacock DJ, et al. Suppression of coronary vasculitis in a murine model of Kawasaki disease using an angiogenesis inhibitor. Clin Immunol. 1999; 90(1): 147–151.
  98. Ebata R, Abe J, Yasukawa K, et al. Vascular endothelial growth factor in acute Kawasaki disease. Am J Cardiol. 1999; 83(3): 337–339.
  99. Pecorella I, La Cava M, Mannino G, et al. Diffuse granulomatous necrotizing scleritis. Acta Ophthalmol Scand. 2006; 84(2): 263–265.
  100. Li CG, Reynolds I, Ponting JM, et al. Serum levels of vascular endothelial growth factor (VEGF) are markedly elevated in patients with Wegener's granulomatosis. Br J Rheumatol. 1998; 37(12): 1303–1306.
  101. Cid MC, Grant DS, Hoffman GS, et al. Identification of haptoglobin as an angiogenic factor in sera from patients with systemic vasculitis. J Clin Invest. 1993; 91(3): 977–985.
  102. Ara J, Mirapeix E, Arrizabalaga P, et al. Circulating soluble adhesion molecules in ANCA-associated vasculitis. Nephrol Dial Transplant. 2001; 16(2): 276–285.
  103. Boehme MW, Schmitt WH, Youinou P, et al. Clinical relevance of elevated serum thrombomodulin and soluble E-selectin in patients with Wegener's granulomatosis and other systemic vasculitides. Am J Med. 1996; 101(4): 387–394.
  104. Ralston DR, Marsh CB, Lowe MP, et al. Antineutrophil cytoplasmic antibodies induce monocyte IL-8 release. Role of surface proteinase-3, alpha1-antitrypsin, and Fcgamma receptors. J Clin Invest. 1997; 100(6): 1416–1424.
  105. Okabe T, Takaku F. A macrophage factor that stimulates the proliferation of vascular endothelial cells. Biochem Biophys Res Commun. 1986; 134(1): 344–350.
  106. Meyer KC, Kaminski MJ, Calhoun WJ, et al. Studies of bronchoalveolar lavage cells and fluids in pulmonary sarcoidosis. I. Enhanced capacity of bronchoalveolar lavage cells from patients with pulmonary sarcoidosis to induce angiogenesis in vivo. Am Rev Respir Dis. 1989; 140(5): 1446–1449.
  107. Weber J, Meyer KC, Banda P, et al. Studies of bronchoalveolar lavage cells and fluids in pulmonary sarcoidosis. II. Enhanced capacity of bronchoalveolar lavage fluids from patients with pulmonary sarcoidosis to induce cell movement in vitro. Am Rev Respir Dis. 1989; 140(5): 1450–1454.
  108. Silver MR, Messner LV. Sarcoidosis and its ocular manifestations. J Am Optom Assoc. 1994; 65(5): 321–327.
  109. Abe K, Shiraki K, Yasunari T, et al. Peripapillary subretinal neovascularization in sarcoidosis: remission and exacerbation during oral corticosteroid therapy. Jpn J Ophthalmol. 2002; 46(1): 95–99.
  110. Mikami R, Sekiguchi M, Ryuzin Y, et al. Changes in the peripheral vasculature of various organs in patients with sarcoidosis--possible role of microangiopathy. Heart Vessels. 1986; 2(3): 129–139.
  111. Spruit MA, Thomeer MJ, Gosselink R, et al. Skeletal muscle weakness in patients with sarcoidosis and its relationship with exercise intolerance and reduced health status. Thorax. 2005; 60(1): 32–38.
  112. Takemura T, Shishiba T, Akiyama O, et al. Vascular involvement in cutaneous sarcoidosis. Pathol Int. 1997; 47(2-3): 84–89.
  113. Shefield EA. The vascular structure of granulomas. Sarcoidosis. 1994; 11(supl. 1): 155–156.
  114. Takemura T, Hiraga Y, Oritsu M, et al. Electron microscopic study on alveolitis in sarcoidosis. Sarcoidosis. 1994; 11(supl. 1): 157–159.
  115. Zielonka TM, Demkow U, Białas B, et al. Modulatory effect of sera from sarcoidosis patients on angiogenesis. Sarcoidosis. 1999; 16(supl. 1): 11.
  116. Zielonka TM, Demkow U, Białas B, et al. Modulatory effect of sera from sarcoidosis patients on mononuclear cells-induced angiogenesis. J Physiol Pharmacol. 2007; 58(supl. 5): 753–766.
  117. Sekiya M, Ohwada A, Miura K, et al. Serum vascular endothelial growth factor as a possible prognostic indicator in sarcoidosis. Lung. 2003; 181(5): 259–265.
  118. Skopińska-Różewska E, Rogala E, et al. Angiogenic activity of bronchoalveolar lavage (BAL) cells homogenates from sarcoidosis patients. Eur J Clin Invest. 1998; 28(supl. 1): A43.
  119. Skopińska-Różewska E, Rogala E, et al. NON-CD4 + and NON-CD8 + cells are the main source of angiogenic activity of BAL cells homogenates from sarcoidosis patients. Eur Respir J. 1998; 12(supl. 28): 332.
  120. Tolnay E, Kuhnen C, Voss B, et al. Expression and localization of vascular endothelial growth factor and its receptor flt in pulmonary sarcoidosis. Virchows Arch. 1998; 432(1): 61–65.
  121. Matsuda M, Sakurai K, Fushimi T, et al. Sarcoidosis with high serum levels of vascular endothelial growth factor (VEGF), showing RS3PE-like symptoms in extremities. Clin Rheumatol. 2004; 23(3): 246–248.
  122. Katoh S, Fukushima K, Matsumoto N, et al. Accumulation of CXCR3-expressing eosinophils and increased concentration of its ligands (IP10 and Mig) in bronchoalveolar lavage fluid of patients with chronic eosinophilic pneumonia. Int Arch Allergy Immunol. 2005; 137(3): 229–235.
  123. Agostini C, Cassatella M, Zambello R, et al. Involvement of the IP-10 chemokine in sarcoid granulomatous reactions. J Immunol. 1998; 161(11): 6413–6420.
  124. Letizia C, Danese A, Reale MG, et al. Plasma levels of endothelin-1 increase in patients with sarcoidosis and fall after disease remission. Panminerva Med. 2001; 43(4): 257–261.
  125. Carlesimo M, Giustini S, Rossi A, et al. Treatment of cutaneous and pulmonary sarcoidosis with thalidomide. J Am Acad Dermatol. 1995; 32(5 Pt 2): 866–869.
  126. Demkow U, Zielonka TM, Remiszewski P, et al. The effect of sera from allergic alveolitis patients on leukocyte induced angiogenesis in relation to IL6 and IL8 serum level. Allergy. 2000; 55(supl. 63): 88.
  127. Zielonka TM, Demkow U, Filewska M, et al. Angiogenic activity of sera from extrinsic allergic alveolitis patients in relation to clinical, radiological, and functional pulmonary changes. Lung. 2010; 188(5): 375–380.
  128. Navarro C, Ruiz V, Gaxiola M, et al. Angiogenesis in hypersensitivity pneumonitis. Arch Physiol Biochem. 2003; 111(4): 365–368.
  129. Navarro C, Mendoza F, Barrera L, et al. Up-regulation of L-selectin and E-selectin in hypersensitivity pneumonitis. Chest. 2002; 121(2): 354–360.
  130. Pardo A, Barrios R, Gaxiola M, et al. Increase of lung neutrophils in hypersensitivity pneumonitis is associated with lung fibrosis. Am J Respir Crit Care Med. 2000; 161(5): 1698–1704.
  131. Oltmanns U, Schmidt B, Hoernig S, et al. Increased spontaneous interleukin-10 release from alveolar macrophages in active pulmonary sarcoidosis. Exp Lung Res. 2003; 29(5): 315–328.
  132. Pavlakovic H, Von Schütz V, Rössler J, et al. Quantification of angiogenesis stimulators in children with solid malignancies. Int J Cancer. 2001; 92(5): 756–760.
  133. Bertolini F, Mingrone W, Alietti A, et al. Thalidomide in multiple myeloma, myelodysplastic syndromes and histiocytosis. Analysis of clinical results and of surrogate angiogenesis markers. Ann Oncol. 2001; 12(7): 987–990.
  134. Senechal B, Elain G, Jeziorski E, et al. Expansion of regulatory T cells in patients with Langerhans cell histiocytosis. PLoS Med. 2007; 4(8): e253.
  135. Brower V. Tumor angiogenesis--new drugs on the block. Nat Biotechnol. 1999; 17(10): 963–968.
  136. Gordon MS. Vascular endothelial growth factor as a target for antiangiogenic therapy. J Clin Oncol. 2000; 18(21 Suppl): 45S–6S.
  137. Baumgartner I, Pieczek A, Manor O, et al. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation. 1998; 97(12): 1114–1123.
  138. Losordo DW, Vale PR, Symes JF, et al. Gene Therapy for Myocardial Angiogenesis : Initial Clinical Results With Direct Myocardial Injection of phVEGF165 as Sole Therapy for Myocardial Ischemia. Circulation. 1998; 98(25): 2800–2804.

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

Czasopismo Pneumonologia i Alergologia Polska dostęne jest również w Ikamed - księgarnia medyczna

Wydawcą serwisu jest "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail: viamedica@viamedica.pl