open access

Vol 77, No 4 (2009)
REVIEWS
Published online: 2009-06-26
Submitted: 2013-02-22
Get Citation

Lung microangiopathy in diabetes

Krzysztof Kuziemski, Lucyna Górska, Ewa Jassem, Aleksandra Madej-Dmochowska
Pneumonol Alergol Pol 2009;77(4):394-399.

open access

Vol 77, No 4 (2009)
REVIEWS
Published online: 2009-06-26
Submitted: 2013-02-22

Abstract

Diabetes mellitus (DM) is the metabolic disorder, which is characterised by persistent hyperglycaemia and abnormal metabolism of carbohydrates, proteins and lipids. These metabolic disorders result from impaired insulin secretion, altered tissue sensitivity to insulin or the coexistence of both these mechanisms. Chronic DM usually results in micro- and macroangiopathy, which in turn may have a negative impact on the function of internal organs. Microangiopathy specifically affects eyes (retinopathy), kidney (nephropathy) and peripheral nervous system (neuropathy). Little is known about the influence of diabetic microangiopathy on lung function. A few available papers describe lung function and lung diffusing capacity for carbon monoxide (DLCO) impairment in patients with both DM type 1 and type 2. Reduction of DLCO can indicate however, that DM leads to alveolar-capillary barrier damage in the lung. In this paper authors review available literature on microangiopathy and its influence on the lung function.

Abstract

Diabetes mellitus (DM) is the metabolic disorder, which is characterised by persistent hyperglycaemia and abnormal metabolism of carbohydrates, proteins and lipids. These metabolic disorders result from impaired insulin secretion, altered tissue sensitivity to insulin or the coexistence of both these mechanisms. Chronic DM usually results in micro- and macroangiopathy, which in turn may have a negative impact on the function of internal organs. Microangiopathy specifically affects eyes (retinopathy), kidney (nephropathy) and peripheral nervous system (neuropathy). Little is known about the influence of diabetic microangiopathy on lung function. A few available papers describe lung function and lung diffusing capacity for carbon monoxide (DLCO) impairment in patients with both DM type 1 and type 2. Reduction of DLCO can indicate however, that DM leads to alveolar-capillary barrier damage in the lung. In this paper authors review available literature on microangiopathy and its influence on the lung function.
Get Citation

Keywords

diabetes mellitus; lung microangiopathy; pulmonary function tests; lung diffusing capacity for carbon monoxide

About this article
Title

Lung microangiopathy in diabetes

Journal

Advances in Respiratory Medicine

Issue

Vol 77, No 4 (2009)

Pages

394-399

Published online

2009-06-26

Bibliographic record

Pneumonol Alergol Pol 2009;77(4):394-399.

Keywords

diabetes mellitus
lung microangiopathy
pulmonary function tests
lung diffusing capacity for carbon monoxide

Authors

Krzysztof Kuziemski
Lucyna Górska
Ewa Jassem
Aleksandra Madej-Dmochowska

References (60)
  1. Diabetes Prevention Programme Research Group. New Engl J Med. 2002; 346: 393–403.
  2. www.who.int/diabetes.
  3. Tatoń J. Podstawowe zasady kształtowania dobrych usług leczniczych dla pacjentów z cukrzycą: jakościowa perspektywa reformy opieki zdrowotnej. Medycyna Metaboliczna. 1999; 3: 8–18.
  4. Zalecenia kliniczne dotyczące postępowania u chorych na cukrzycę, 2008. Diabetologia Praktyczna. 2008; 9(supl. A): 1–49.
  5. Lüscher TF, Creager MA, Beckman JA, et al. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part II. Circulation. 2003; 108(13): 1655–1661.
  6. Giugliano D, Ceriello A, Paolisso G. Oxidative stress and diabetic vascular complications. Diabetes Care. 1996; 19(3): 257–267.
  7. Haller H. Endothelial Function. Drugs. 1997; 53(Supplement 1): 1–10.
  8. Vlassara H. Recent progress in advanced glycation end products and diabetic complications. Diabetes. 1997; 46 Suppl 2: S19–S25.
  9. De Mattia G, Laurenti O, Fava D. Diabetic endothelial dysfunction: effect of free radical scavenging in Type 2 diabetic patients. J Diabetes Complications. 2003; 17(2 Suppl): 30–35.
  10. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev. 2004; 25(4): 581–611.
  11. Cohen RA. Dysfunction of vascular endothelium in diabetes mellitus. Circulation. 1993; 87: 67–76.
  12. Nishikawa T, Edelstein D, Liang DuX. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000; 404: 689–794.
  13. Ihnat MA, Thorpe JE, Ceriello A. Hypothesis: the 'metabolic memory', the new challenge of diabetes. Diabet Med. 2007; 24(6): 582–586.
  14. Stamler J, Vaccaro O, Neaton JD, et al. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care. 1993; 16(2): 434–444.
  15. Shara NM, Wang H, Valaitis E, et al. Strong Heart Study, Strong Heart Study. Diabetes and cardiovascular disease. Annu Rev Med. 2002; 53(11): 245–267.
  16. Coppola G, Corrado E, Muratori I, et al. Increased levels of C-reactive protein and fibrinogen influence the risk of vascular events in patients with NIDDM. Int J Cardiol. 2006; 106(1): 16–20.
  17. Dandona P. Effects of antidiabetic and antihyperlipidemic agents on C-reactive protein. Mayo Clin Proc. 2008; 83(3): 333–342.
  18. Schram MT, Chaturvedi N, Schalkwijk C, et al. EURODIAB Prospective Complications Study. Vascular risk factors and markers of endothelial function as determinants of inflammatory markers in type 1 diabetes: the EURODIAB Prospective Complications Study. Diabetes Care. 2003; 26(7): 2165–2173.
  19. Schulze MB, Shai I, Rimm EB, et al. C-reactive protein and incident cardiovascular events among men with diabetes. Diabetes Care. 2004; 27(4): 889–894.
  20. Jager A, Hinsbergh Vv, Kostense PJ, et al. von Willebrand Factor, C-Reactive Protein, and 5-Year Mortality in Diabetic and Nondiabetic Subjects : The Hoorn Study. Arteriosclerosis, Thrombosis, and Vascular Biology. 1999; 19(12): 3071–3078.
  21. Bruno G, Merletti F, Biggeri A, et al. Casale Monferrato Study. Progression to overt nephropathy in type 2 diabetes: the Casale Monferrato Study. Diabetes Care. 2003; 26(7): 2150–2155.
  22. Dalquen P. The lung in diabetes mellitus. Respiration. 1999; 66(1): 12–13.
  23. Kida K, Utsuyama M, Takizawa T, et al. Changes in lung morphologic features and elasticity caused by streptozotocin-induced diabetes mellitus in growing rats. Am Rev Respir Dis. 1983; 128(1): 125–131.
  24. Popov D, Simionescu M. Alterations of lung structure in experimental diabetes, and diabetes associated with hyperlipidaemia in hamsters. Eur Respir J. 1997; 10(8): 1850–1858.
  25. Kodolova IM, Lysenko LV, Saltykov BB. Changes in the lungs in diabetes mellitus. Arkh Patol. 1982; 44: 35–40.
  26. Matsubara T, Hara F. [The pulmonary function and histopathological studies of the lung in diabetes mellitus]. Nihon Ika Daigaku Zasshi. 1991; 58(5): 528–536.
  27. Weynand B, Jonckheere A, Frans A, et al. Diabetes mellitus induces a thickening of the pulmonary basal lamina. Respiration. 1999; 66(1): 14–19.
  28. Guazzi M, Oreglia I, Guazzi MD. Insulin improves alveolar-capillary membrane gas conductance in type 2 diabetes. Diabetes Care. 2002; 25(10): 1802–1806.
  29. Goldman MD. Lung Dysfunction in Diabetes. Diabetes Care. 2003; 26(6): 1915–1918.
  30. Kaminsky DA. Spirometry and diabetes: implications of reduced lung function. Diabetes Care. 2004; 27(3): 837–838.
  31. Davis WA, Knuiman M, Kendall P, et al. Fremantle Diabetes Study. Glycemic exposure is associated with reduced pulmonary function in type 2 diabetes: the Fremantle Diabetes Study. Diabetes Care. 2004; 27(3): 752–757.
  32. Litonjua AA, Lazarus R, Sparrow D, et al. Lung function in type 2 diabetes: the Normative Aging Study. Respir Med. 2005; 99(12): 1583–1590.
  33. Yeh HC, Punjabi NM, Wang NY, et al. Cross-Sectional and Prospective Study of Lung Function in Adults With Type 2 Diabetes: The Atherosclerosis Risk in Communities (ARIC) Study. Diabetes Care. 2007; 31(4): 741–746.
  34. Fletcher C, Peto R. The natural history of chronic airflow obstruction. Br Med J. 1977; 1(6077): 1645–1648.
  35. Klein BE, Moss SE, Klein R, et al. Wisconsin Epidemiologic Study of Diabetic Retinopathy. Peak expiratory flow rate: relationship to risk variables and mortality: the Wisconsin Epidemiologic Study of diabetic retinopathy. Diabetes Care. 2001; 24(11): 1967–1971.
  36. Guvener N, Tutuncu NB, Akcay S, et al. Alveolar gas exchange in patients with type 2 diabetes mellitus. Endocr J. 2003; 50(6): 663–667.
  37. Schuyler MR, Niewoehner DE, Inkley SR, et al. Abnormal lung elasticity in juvenile diabetes mellitus. Am Rev Respir Dis. 1976; 113(1): 37–41.
  38. Schernthaner G, Haber P, Kummer F, et al. Lung elasticity in juvenile-onset diabetes mellitus. Am Rev Respir Dis. 1977; 116(3): 544–546.
  39. Sandler M, Bunn AE, Stewart RI. Pulmonary function in young insulin-dependent diabetic subjects. Chest. 1986; 90(5): 670–675.
  40. Villa MP, Montesano M, Barreto M, et al. Diffusing capacity for carbon monoxide in children with type 1 diabetes. Diabetologia. 2004; 47(11): 1931–1935.
  41. Fuso L, Cotroneo P, Basso S, et al. Postural variations of pulmonary diffusing capacity in insulin-dependent diabetes mellitus. Chest. 1996; 110(4): 1009–1013.
  42. Strojek K, Ziora D, Sroczyński J, et al. Objawy płucne późnych powikłań cukrzycowych. Pneumonol Alergol Pol. 1993; 61: 166–170.
  43. Kuziemski K, Górska L, Słomiński W, et al. Znaczenie DLCO w wykrywaniu mikroangiopatii płucnej. Doniesienie wstępne Pneumonol Alergol Pol. 2008; 76(.): 43A.
  44. Mori H, Okubo M, Okamura M, et al. Abnormalities of pulmonary function in patients with non-insulin-dependent diabetes mellitus. Intern Med. 1992; 31(2): 189–193.
  45. Davis TM, Knuiman M, Kendall P, et al. Reduced pulmonary function and its associations in type 2 diabetes: the Fremantle Diabetes Study. Diabetes Res Clin Pract. 2000; 50(2): 153–159.
  46. Engström G, Janzon L. Risk of developing diabetes is inversely related to lung function: a population-based cohort study. Diabet Med. 2002; 19(2): 167–170.
  47. Ljubić S, Metelko Z, Car N, et al. Reduction of diffusion capacity for carbon monoxide in diabetic patients. Chest. 1998; 114(4): 1033–1035.
  48. Klein BE, Moss SE, Klein R, et al. Wisconsin Epidemiologic Study of Diabetic Retinopathy. Peak expiratory flow rate: relationship to risk variables and mortality: the Wisconsin Epidemiologic Study of diabetic retinopathy. Diabetes Care. 2001; 24(11): 1967–1971.
  49. Ford ES, Ford ES. Body mass index, diabetes, and C-reactive protein among U.S. adults. Diabetes Care. 1999; 22(12): 1971–1977.
  50. Elasy T. Diabetes and C-Reactive Protein. Clinical Diabetes. 2007; 25(1): 1–2.
  51. Hollander PA, Blonde L, Rowe R, et al. Efficacy and safety of inhaled insulin (exubera) compared with subcutaneous insulin therapy in patients with type 2 diabetes: results of a 6-month, randomized, comparative trial. Diabetes Care. 2004; 27(10): 2356–2362.
  52. Gerber RA, Cappelleri JC, Kourides IA, et al. Treatment satisfaction with inhaled insulin in patients with type 1 diabetes: a randomized controlled trial. Diabetes Care. 2001; 24(9): 1556–1559.
  53. DeFronzo RA, Bergenstal RM, Cefalu WT, et al. Exubera Phase III Study Group. Efficacy of inhaled insulin in patients with type 2 diabetes not controlled with diet and exercise: a 12-week, randomized, comparative trial. Diabetes Care. 2005; 28(8): 1922–1928.
  54. Lenzer J. Inhaled insulin is approved in Europe and United States. BMJ. 2006; 332(7537): 321–324.
  55. Becker RHA, Sha S, Frick AD, et al. The effect of smoking cessation and subsequent resumption on absorption of inhaled insulin. Diabetes Care. 2006; 29(2): 277–282.
  56. Liu MC, Riese RJ, Van Gundy K, et al. Effects of inhaled human insulin on airway lining fluid composition in adults with diabetes. Eur Respir J. 2008; 32(1): 180–188.
  57. Skyler JS, Jovanovic L, Klioze S, et al. Inhaled Human Insulin Type 1 Diabetes Study Group. Two-year safety and efficacy of inhaled human insulin (Exubera) in adult patients with type 1 diabetes. Diabetes Care. 2007; 30(3): 579–585.
  58. Quattrin T, Bélanger A, Bohannon NJV, et al. Exubera Phase III Study Group. Efficacy and safety of inhaled insulin (Exubera) compared with subcutaneous insulin therapy in patients with type 1 diabetes: results of a 6-month, randomized, comparative trial. Diabetes Care. 2004; 27(11): 2622–2627.
  59. Hsia CCW, Raskin P. The diabetic lung: relevance of alveolar microangiopathy for the use of inhaled insulin. Am J Med. 2005; 118(3): 205–211.
  60. Nathan DM. Counterpoint: No time to inhale: arguments against inhaled insulin in 2007. Diabetes Care. 2007; 30(2): 442–443.

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

Czasopismo Pneumonologia i Alergologia Polska dostęne jest również w Ikamed - księgarnia medyczna

Wydawcą serwisu jest "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail: viamedica@viamedica.pl