ANGIOGENEZA W NIEDROBNOKÓRMKOWYM RAKU PŁUCA – IMPLIKACJE KLINICZNE

ANGIOGENESIS IN NON SMALL CELL LUNG CANCER CLINICAL IMPLICATIONS

Key words: NSCLC, angiogenesis

Wstęp

Rak niedrobnokomórkowy płuc (NDRP) stanowi poważny problem zdrowia społecznego będąc główną przyczyną zgonów z powodu nowotworów złośliwych. Osiągnięcia biologii molekularnej ostatnich lat pozwalają mieć nadzieję na poprawę wyników leczenia przez opracowanie nowych testów umożliwiających wczesne wykrycie i monitorowanie przebiegu oraz wdrożenie nowych strategii leczenia tego nowotworu. Badania nad procesem angiogenezy są istotnym elementem poszanowania biologii NDRP i mogą mieć ważne implikacje kliniczne.

Angiogeneza jest procesem tworzenia nowych naczyń krwionośnych na podłożu już istniejących. Stanowi proces wieloetapowy, który obejmuje przebudowę macierzy zewnętrzkomórkowej, migrację oraz proliferację komórek śródbłonka, różnicowanie, wydłużanie i dojrzewanie naczyń krwionośnych oraz tworzenie zespołów z naczyniami wyższego kalibru (2, 5).

W ostatnich latach zidentyfikowano już liczne czynniki pobudzające i hamujące tworzenie naczyń krwionośnych oraz określono przebieg tego procesu (2, 8, 23, 29). (tab. I)

Proces angiogenezy odgrywa istotną rolę w rozwoju tkanki nowotworowej, warunkując wzrost guza pierwotnego oraz ułatwiając proces powstawania i rozwoju przerzutów. Wważa się, że decydujący wpływ na zapoczątkowanie procesu angiogenezy w nowotworach ma niedotlenienie komórek rozrastającego się guza oraz mutacje w genach supresorowych i onkogenach (2, 8, 12, 23, 29).

Naczyń krwionośnych powstające w obrębie tkanki nowotworowej wykazują wiele różnic w porównaniu z naczyniami powstalymi w procesach fizjologicznych. Mają one kręty przebieg, szczeliny w błonie podstawowej, wykazują rozluźnienie komórek śródbłonka i pozbawione są unerwienia (8, 23, 29).

Związek pomiędzy angiogenezą a rozwojem NDRP jest przedmiotem licznych badań. Ogromne zainteresowanie budzą możliwości wykorzystania nagromadzonych danych w prognozowaniu przebiegu i leczenia NDRP.
Tab. 1: Czynniki regulujące angiogenezę (wg 5, zmodyfikowane)
Tab. 1: Angiogenesis regulatory factors (5, modified)

<table>
<thead>
<tr>
<th>Stymulatory angiogenezy</th>
<th>Czynniki hamujące angiogenezę</th>
</tr>
</thead>
<tbody>
<tr>
<td>naczynio-śródbłonkowy czynnik wzrostu (VEGF, vascular endothelial growth factor)</td>
<td>angiostatyna (angiostatin)</td>
</tr>
<tr>
<td>zasadowy i kwasowy czynnik wzrostu fibroblastos (βFGF i αFGF, basic and acid fibroblast growth factors)</td>
<td>trombospondyna –1 (trombospondin-1)</td>
</tr>
<tr>
<td>interleukina 8 (IL-8, interleukin 8)</td>
<td>czynnik płytkowy 4 (PF4, platelet factor 4)</td>
</tr>
<tr>
<td>transformujący czynnik wzrostu (TGFα, transforming growth factor alpha)</td>
<td>tkankowe inhibitory metaloproteaz</td>
</tr>
<tr>
<td>śródbłonkowy czynnik wzrostu pochodzący z płytek (PD-ECGF, platelet- derived endothelial growth factor)</td>
<td>(TIMP, tissue metalloproteinase inhibitors)</td>
</tr>
<tr>
<td>czynnik martwicy nowotworu (TNFα, tumour necrosis factor alpha)</td>
<td>interleukina 10 (IL-10, interleukin 10)</td>
</tr>
<tr>
<td>czynnik tkankowy (TF, tissue factor)</td>
<td>interleukina 12 (IL-12, interleukin 12)</td>
</tr>
<tr>
<td></td>
<td>interferon α (INF α, interferon alpha)</td>
</tr>
<tr>
<td></td>
<td>czynnik martwicy nowotworów (TNFα, tissue necrosis factor alpha)</td>
</tr>
</tbody>
</table>

* TNFα, czynnik martwicy nowotworów – może pełnić zaletnie od równoważnej miejscowej rolę zarówno aktyjującą, jak i hamującą tworzenie naczyń

Gęstość naczyń mikrokrążenia jako wykładnik procesu angiogenezy

Badaniom gęstości naczyń mikrokrążenia w nowotworach liściowych poświęcono ostatnio wiele uwagi w nadziei, iż uda się wykazać związek pomiędzy tym parametrem patologicznym a rokowaniem. Oceny gęstości naczyń włośnogłowych dokonuje się w obrębie preparatów histologicznych z użyciem metod immunohistochemicznych. W tym celu wykorzystuje się przeciwciała przeciwko obecnym na komórkach śródbłonka: czynnikowi VIII (czynnik von Willebranda), antygenowi CD31 (płytkowo-śródbłonkowa cząsteczka adhezyjna) lub antygenowi CD34 (cząsteczką charakteryzującą komórki progneritowe).

 Wyniki badań, których celem jest określenie znaczenia progностycznego gęstości naczyń mikrokrążenia w NDRP pozostają kontrowersyjne (3, 8, 9, 17, 18, 20, 22, 24, 25, 34). Wykazano, iż gęstość naczyń mikrokrążenia koreluje z wielkością guza oraz aktywnością proliferacyjną NDRP (17, 18). Wiele danych wskazuje, iż nasilenie angiogenezy określone metodą oceny gęstości naczyń mikrokrążenia koreluje z częstością nawrotów po leczeniu operacyjnym i tym samym ma negatywne znaczenie progностyczne (9, 20, 22, 34). Zwrócono jednak uwagę, że powyższy związek może być zależny od typu histopatologicznego NDRP (22).

Istnieją pojedyncze doniesienia negujące znaczenie prognostyczne różnic w gęstości naczyń mikrokrążenia w utkaniu NDRP, a nawet wskazujące na pozytywną korelację pomiędzy unaczynieniem a rokowaniem w tej grupie nowotworów (3).

Stwierdzono, że około 16% badanych NDRP w stadium I nie wykazywało morfologicznych cech neoangiogenezy a w utkaniu tych nowotworów zachowywał się układ naczyń w przegrodach pęcherzykowych. Co więcej, guzy o takiej morfologii naczyń wykazywały bardziej agresywny przebieg (24).
Angiogeneza w niedrobnokomórkowym raku płuca

Interesującą próbę wyjaśnienia przyczyn istniejących kontrowersji podjęli Schor i wsp. (25). Cytowani autorzy wykazali heterogeniczny charakter unaczyńienia NDRP. Wskazali na wynikającą z tego faktu trudność w określeniu gęstości naczyń mikrokrążenia, szczególnie w dużych guzach, gdzie poszczególne fragmenty mogą różnić się morfologicznie (np. część centralna z ogniskami martwicy wykazuje różnice w porównaniu z częścią obwodową). Wyrażali oni przypuszczenie, iż określanie gęstości naczyń krwionośnych w guzie jest wartościowe w odniesieniu do guzów małych – takich, gdzie pojedynczy wycinek zawiera on przekrój przez całość zmiany wraz z marginesem tkanki otaczającej. Co więcej, wykazali, że wyniki porównawczej oceny gęstości naczyń mikrokrążenia pomiędzy tkanką guza a przyległą prawidłową tkanką oskrzeł mogą różnić się zasadniczo w zależności od metody użytej do zliczania naczyń (metoda oceny gorących punktów tj. najgęściej unaczynionego obszaru w porównaniu do metody określenia średniej gęstości naczyń w całym preparacie).

Nie bez znaczenia pozostaje również fakt, iż wyniki badań z użyciem do znakowania śródblonków przeciwiała anty vWF (przeciwiało przeciwko czynnikiowi VIII, von Willebranda) nie dają podstaw do rozróżnienia naczyń już istniejących od nowo utworzonych przez guz (25, 27).

Należy również zwrócić uwagę, iż większość badań dotyczy raków operacyjnych tj. w stadiach I-IIIA, natomiast niewiele wiadomo o morfologii unaczyńienia w zaawansowanych, przerzutowych NDRP.

Naczyniowo-śródblonkowy czynnik wzrostu (VEGF) i inne czynniki regulujące angiogenezę

VEGF należy do najlepiej poznanych czynników proangiogenicznych, stąd liczne badania dotyczące ekspresji tej proteiny w NDRP (4, 7, 8, 13, 19). Obecność VEGF jak i receptorów dla tego białka (flt-1 i flk-1/KDR) wykazano w komórkach nowotworowych, komórkach śródblonka i fibroblastach zrębu (4). Lokalizacja białek systemu VEGF wskazuje na możliwość auto- i parakrynkowej regulacji w obrębie tkanki nowotworowej, jednak zależności te wydają się niezwykle złożone i obejmować mogą prawdopodobnie również działanie VEGF jako czynnika bezpośrednio regulującego proliferację komórek nowotworowych (4).

Związek pomiędzy ekspresją VEGF a rokowaniem w NDRP pozostaje dyskusyjny. Wielu autorów wykazało pozytywną korelację pomiędzy ekspresją VEGF a gęstością naczyń mikrokrążenia w NDRP. Udowodniono, że ekspresja VEGF może być niezależnym negatywnym czynnikiem progностycznym u chorych operowanych radykalnie, szczególnie w odniesieniu do raków płaskonablonkowych (13). Fontanini i wsp. uzyskali podobne wyniki, wskazujące na pozytywną korelację pomiędzy wysoką ekspresją białka VEGF, lub jego transkryptu (VEGFmRNA) a skróceniem czasu remisji (7, 8).

Stwierdzono wzrost stężenia VEGF i aktywności angiogenicznej chorych operowanych z powodu NDRP jako odpowiedź na niedotlenienie w okresie okólope-racyjnym. W związku z tym wysunięto hipotezę, iż chorey poddani zabiegom resekcji tkanki płucnej z powodu nowotworu mogliby odnosić potencjalne korzyści z terapii antyangiogenicznej dla zapobieżenia rozwojowi mikroprzezrutowów (19). Niezbędne wydają się więc dalsze badania dotyczące tego zagadnienia.
Wiadomo ponadto, iż VEGF jest silnym czynnikiem zwiększającym przepuszczalność naczyń krwionośnych. Nie ulega obecnie wątpliwości, że istnieje związek VEGF z tworzeniem wysięku opłucnowego w przebiegu NDRP. Wykazano wyższe wartości stężenia VEGF w wysiękach opłucnowych w przebiegu NDRP aniżeli w surowicy osób zdrowych i przesiękach w przebiegu martskości wątroby, jak również stwierdzono wyższe stężenia VEGF w wysiękach nowotworowych aniżeli gruźliczych (14, 35). Uwzględniono ponadto, że przepuszczalność naczyń krwionośnych wzrasta proporcjonalnie do stężenia VEGF w płynie wysiękowym (35). Uzyskano ponadto zahamowanie przepuszczalności właściwej po zastosowaniu przeciwciał blokujących receptor dla VEGF.

Znacznie mniej wiadomo na temat związku innych niż VEGF czynników angiogennych a rozwojem NDRP. Wykazano statystycznie istotną korelację pomiędzy ekspresją czynnika tkankowego (TF), jednego z białek zaangażowanych w proces krzepnięcia krwi, a wysoką ekspresją VEGF, jak również wykazano skrócenie czasu przeżycia pacjentów z NDRP o wysokiej ekspresji TF (15).

W pojedynczych doniesieniach zwrócono uwagę, iż wysoka ekspresja zasadowego czynnika wzrostu fibroblastów (bFGF) i jego receptora (FGFR1) wiąże się ze skróceniem czasu przeżycia chorych z gruczołakorakiem płucę (30, 32).

Potwierdzono zwiększenie stężenia interleukiny 8 (IL-8) w tkankach NDRP w porównaniu z prawidłową tkanką płucną. Wykazano również, iż IL-8 może być bezpośrednio produkowana przez komórki raków płaskonablonkowych i gruczołakoraków (28). Autorzy powyższej pracy sugerują, iż IL-8 odgrywa rolę decydującej cytotycyny chemotaktycznej w procesie migracji komórek śródblonka i, co więcej, proces ten może być hamowany przez przeciwciała anty IL-8. Powyższe spostrzeżenia znalazły potwierdzenie w badaniach in vivo.

Obecnie uważa się, iż jednocześnie analiza kilku wybranych czynników proangiogennych może przyczynić się do bardziej precyzyjnego określenia znaczenia procesu angiogenezy w ocenie rokowania pacjentów operowanych z powodu NDRP (32).

Wykładniki angiogenezy a regulatory onkogenezy w NDRP

Związek pomiędzy aktywnością angiogenną a aktywatorami i inhibitorym procesu onkogenezy jest przedmiotem coraz szerszych badań w NDRP (1, 6, 9, 10, 16, 21).

Badano również związek pomiędzy unaczyńnieniem NDRP a ekspresją białka bcl-2, jednego z negatywnych regulatorów apoptozy, wykazując odwrotną korelację pomiędzy gęstością naczyń mikrokroążenia a ekspresją bcl-2. Sugero-
wany mechanizm tego zjawiska obejmuje bądź stymulację wydzielenia czynników hamujących angiogenezę bądź blokowanie aktywności czynników pobudzających ten proces (16).

Wiele uogólniono również badaniami ekspresji receptorów dla czynników wzrostu o aktywności kinazy tyrozyny z rodziny receptora dla naskórko-wego czynnika wzrostu (EGFR) i ich ligandów w aspekcie związku z angiogenezą. Białka tej grupy są ważnymi regulatorami cyklu komórkowego, a ich nadekspresja prowadzi do wzmożenia aktywności proliferacyjnej (6). Nie udowodniono jednak jak dotąd bezpośredniego związku pomiędzy nasileniem angiogenezy a systemem białek wzrostowych i ich receptorów z rodziny EGFR (6).

Perspektywy nowych form terapii opartej na hamowaniu angiogenezy w NDRP

Dzięki znacznemu postępowi, jaki dokonał się w ostatnich latach w badaniach nad przebiegami angiogenezy możliwe było podjęcie prób hamowania rozwoju nowotworów poprzez modyfikację procesu angiogenezy. Komórki śródblonka charakteryzujące się genetyczną stabilnością i jednorodnością, a także niskim potencjałem podziałowym są atrakcyjnym celem terapii przeciwnowotworowej tym bardziej, że powyższe cechy molekularne łączą się z małym prawdopodobieństwem wytworzenia lekooporności. Proponowane metody terapii opierają się na hamowaniu tworzenia naczyń lub niszczeniu już istniejących, stosowanymi samodzielnie lub w połączeniu z konwencjonalną terapią cytostatyczną bądź radioterapią.

Wiele dowodów na potencjalną skuteczność leczenia ukiernunkowania na hamowanie nowotworzenia naczyń uzyskano z badań na modelu zwierzęcym.

Zachęcające wyniki hamowania wzrostu guza z użyciem linii ludzkiego raka płuca (H57) uzyskano poprzez zmniejszenie puli dostępnego VEGF. Efekt ten był wynikiem wiązania VEGF z chimerycznym białkiem złożonym z domeny zewnątrzkomórkowej receptora dla VEGF (flk-1) i ciężkiego łańcucha immunoglobuliny G (31). Podobnie interesujące wyniki potwierdzające potencjalne korzyści ze stosowania terapii antyangiogenicznej w raku płuca uzyskano z wykorzystaniem inhibitorów metaloproteinaz (26, 33). Zastosowanie wybiórczego inhibitora metaloproteinaz o symbołe AG 3340 u myszy, który przeszczeplono komórki lekoopornej linii ludzkiego raka płuca spowodowało regresję masy guza i efekt ten był spotykany przy łącznym użyciu blokera metaloproteinaz i klasycznych cytostatyków (26). Pierwsze inhibitory metaloproteinaz znalazły się już w fazie prób klinicznych (33).

Nieliczne prace dotyczą zmian fenotypu angiogennego pod wpływem leczenia. Górski i wsp. (11) udowodnili zwiększenie ekspresji VEGF w komórkach linii ludzkiego raka płaskonablonkowego pod wpływem promieniowania jonizującego, a następnie wykazaли, iż blokowanie aktywności VEGF wzmacnia efekt przeciwnowotworowy promieniowania jonizującego.

Niestety, większość badań dotyczących przypuszczalnej wartości leczniczej substancji hamujących tworzenie naczyń krwionośnych w tkance nowotworowej jest prowadzonych na modelach doświadczalnych i nie udowodniono, jak dotąd, jednoznacznych korzyści z tego typu terapii u ludzi.
Angiogeneza nowotworowa będąca skutkiem wewnętrznego programu komórki nowotworowych i zachodząca dzięki wczesnym oddziaływaniom pomiędzy komórkami nowotworowymi, a mikrośrodowiskiem je otaczającym jest częścią ciągu zjawisk molekularnych prowadzących do rozwoju nowotworów złośliwych. Wiele badań udrożniło niezwykle istotne znaczenie tego procesu w rozwoju NDRP. Ingerencja w tak złożony system zależności wydaje się trudna głównie ze względu na brak możliwości stworzenia odpowiednio precyzyjnych modeli mikrośrodowiska tkanki nowotworowej w badaniach in vitro. Postęp w dziedzinie nauk podstawowych, a zwłaszcza inżynierii genetycznej, stwarza szansę na skuteczniejsze wykorzystanie poznanych już elementów procesu angiogenezy w celu opracowania nowych form terapii NDRP.

Piśmiennictwo

19. Maniwa Y i wsp. Vascular endothelial growth factor increased by pulmonary surgery accelerates the growth of micrometastases in Pneumonologia i Alergologia
metastatic lung cancer *Chest* 1998; 114: 1668-1675

21 Nishizaki M i wsp. Recombinant adenovirus expressing wild-type p53 is Atlantiogenic; a proposed mechanism for bystander effect *Clin Cancer Res* 1999; 5: 1015-1023

30 Takanami I i wsp. Tumor angiogenesis in pulmonary adenocarcinomas: relationship with basic fibroblast growth factor, its receptor, and survival *Neoplasma* 1997; 44: 295 – 298

31 Takayama K, Ueno H, Nakanishi Y i wsp. Suppression of tumor angiogenesis and growth by gene transfer of a soluble form of vascular endothelial growth factor receptor into a remote organ *Cancer Res* 2000; 60: 2169-2177

35 Zebrowski BK i wsp. Vascular endothelial growth factor levels and induction of permeability in malignant pleural effusions *Clin Cancer Res* 1999; 5: 3364-3368

Wpłynęła: 7.02.2001
Adres: Katedra i Klinika Chorób Płuc Akademii Medycznej, 53-439 Wrocław, ul. Grabiszewskiego 105