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Abstract
Gut microbiota has aroused great interest because of its influence on the human body’s homeostasis. In addition, 
multiple reports have indicated its role in the pathogenesis of various diseases. Interestingly, gut microbiota can affect 
hematological disorders by participating in lymphomagenesis. Patients with lymphoproliferative disorders undergo 
many procedures that alter their unique microbiota composition and lead to dysbiosis. However, this can have a bi-
ased effect as many studies have highlighted gut microbiota’s activity in chemotherapy efficacy, for instance by either 
enhancing the anti-malignant effects of cyclophosphamide or by diminishing the activity of doxorubicin or cladribine. 
This review aimed to summarize gut microbiota’s influence on chemotherapy’s outcomes on treatment-related side 
effects in lymphoproliferative disorders, antimicrobial regimens, and possible gut microbiota modifications to enhance 
treatment outcomes.
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Introduction

The term ‘gut microbiota’ (GMB) refers to a composition of 
microbes, including bacteria, viruses, yeast, protozoa, fungi, 
and archaea, that exist within the human gastrointestinal 
(GI) tract [1]. Acquired at birth, GMB plays a fundamental 
role in the development of the immune system and its 
further homeostasis. The GI tract is the biggest lymphoid 
organ and the most extensive surface in touch with an 
external environment [2]. As much as 70% of human im-
mune cells are there, and every day they identify a variety 
of new antigens. Therefore, a relationship between the GMB 
and the immune system is required to balance excessive 
responses to antigen and infectious complications. Further-
more, protective activities to combat pathogens, vitamins 
and amino acid synthesis, and the structure of the GI tract 
barrier, are influenced by GMB [3]. One thousand or more 

species inhabit the GI tract, with the exact composition 
unique to each individual and appearing to remain stable 
throughout life [4].

The main phyla in the GI tract are Firmicutes and 
Bacteroidetes, which are dominant; less abundant are 
Proteobacteria, Actinobacteria, and Verrucomicrobia [5]. 
Nevertheless, lifestyle, diet, xenobiotics, physical injury, 
and disease can alter its composition and lead to dysbi-
osis, so the state of disruption in the composition and 
functions of microbiota is triggered by a host of external 
factors [6].

Hematological patients are especially prone to devel-
op dysbiosis due to hospitalization, infection, malnutrition, 
treatment, and eventually hematopoietic stem cell trans-
plantation (HSCT).

Interestingly, multiple studies have demonstrated sub-
stantial crosstalk between the GMB and the innate immune 
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system in influencing response to tumors, therapy outcome, 
and patients’ overall survival (OS) [7]. Therefore, this re-
view aimed to highlight the implications of GMB on the ef-
ficacy and adverse effects of therapy for lymphoprolifera-
tive malignancies.

The composition of GMB in the human body is set out 
in Table I.

Chronic lymphocytic leukemia

Despite the introduction of novel targeted therapies in 
chronic lymphocytic leukemia (CLL), such as BCl-2 an-
tagonists and Bruton’s tyrosine kinase (BTK) inhibitors, 
the FCR protocol combining an anti-CD20 monoclonal 
antibody with chemotherapeutic agents (fludarabine, cy-
clophosphamide, and rituximab) is still widely used in fit 
patients without TP53 gene abnormalities [11]. It has been 
revealed that the clinical activity of FCR is due to the drugs’ 
pleiotropic effects. Interestingly, the efficacy and toxicity 

of FCR components may also be influenced by GMB. For 
instance, the antineoplastic activity of cyclophosphamide 
is enhanced by a potent immunomodulatory effect [12]. 
High doses used in CLL treatment induce intestinal epi-
thelium damage and mucositis. However, a study by Viaud 
et al. [13] demonstrated that the event is essential for the 
proper activity of cyclophosphamide. The disrupted barrier 
resulted in the translocation of commensal Gram-positive 
bacteria into the secondary lymphoid organs. Subsequently, 
the commensals enhanced T helper 17 (Th17) cells and 
memory Th1 immune response, which promoted antitu-
mor activity. Conversely, germ-free mice with tumors were 
resistant to cyclophosphamide, indicating microbiota’s 
significant role in the antitumor activity of cyclophospha-
mide [13]. Furthermore, the analysis outlined Enterococcus 
hirae and Barnesiella intestinihominis as being responsible 
for the anti-malignant feature of cyclophosphamide [14].

This finding was assessed in a clinical study by Pflug 
et al. [15]. A group of patients with CLL treated with 

Table I. Composition of gut microbiota in healthy humans (based on [5, 8–10])

Microorganism 
of human GMB

Dominant phyla  
of GMB

Most abundant genus  
of GMB Additional information

Bacteria Bacteroidetes Bacteroides

Tanarella

Parabacteroides

Allstipes

Prevotella

Phyla dominate in human GMB and represent 90% of GMB

Each phylum comprises ~30% of bacteria in feces and mucus 
overlying intestinal epithelium

Substantial numbers of Firmicutes are related to known butyra-
te-producing bacteria [5, 10]

Firmicutes Clostridium (represents 
95% of Firmicutes phyla)

Lactobacillus

Bacillus

Enterococcus

Ruminicoccus
Actinobacteria Bifidobacterium

Corynebacterium

Atobium

Phylum is mainly represented by Bifidobacterium genus [10]

Proteobacteria Escherichia

Shigella

Helicobacter

Less abundant phylum which may comprise ~0.1% of bacteria 
in strict anerobic environment of colon  

Increase of phylum is observed in GMB of people aged over 70 [8]

Fusobacteria Fusobacterium
Verrucomicrobia Akkermansia

Methanogenic 
archaea

Mainly single phylotype Methanobrevibacter smithii

Eukarya Mainly yeasts
Viruses Primarily phage

GMB — gut microbiota
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anti-Gram-positive antibiotics developed a response to the 
treatment, progressed significantly earlier (median progres-
sion-free survival (PFS) 14.1 vs. 44.1 months, p <0.001), 
and had reduced OS (median OS 56.1 vs. 91.7 months,  
p <0.001) [15]. Independent multivariate analysis con-
firmed a direct correlation between anti-Gram-positive an-
tibiotics administration and PFS, suggesting the beneficial 
role of GMB in the antitumor effect of cyclophosphamide 
[15]. Furthermore, it has been postulated that fludarabine 
cytotoxicity could also be altered due to dysbiosis, although 
the mechanism is different [16]. This comprises enzymatic 
modification of the drug by Gram-negative non-pathogenic  
Escherichia coli and gram-positive Listeria welshimeri, re-
sulting in increased antineoplastic activity [16]. Hence, 
bacterial infections might lead to biotransformation of the 
fludarabine and enhance its anticancer effect and toxicity.

It is common knowledge that bacteria and viruses par-
ticipate in lymphomagenesis. However, a study by Hooge-
boom et al. [17] presented an influence of fungi on the 
development of a subtype of CLL with mutated immuno-
globulin heavy chain variable gene (IGHV). In the subtype, 
the IGHV gene encodes B-cell receptors (BCRs), which are 
significantly specific for β-(1-6)-glucan, an antigen of yeasts 
and filamentous fungi [17]. Significantly, CLL cells derived 
from patients with no known history of fungal infection pro-
liferated in response to the β-(1-6)-glucan [17]. This sug-
gests the possible participation of fungi in the pathogen-
esis of CLL, similar to that observed in Helicobacter pylori 
responsible for gastric mucosa-associated lymphoid tissue 
(MALT) lymphoma [18]. It would also be interesting to verify 
whether the fungi infection or the antifungal treatment af-
fects the future outcomes of chemotherapy.

Multiple myeloma

Multiple myeloma (MM) is linked to a state of immuno-
suppression and immune impairment, and it is assumed 
that dysbiosis and chronic antigen stimulation could be 
crucial for the pathogenesis of MM [19]. In addition, the 
abovementioned studies presented the influence of GMB 
on response to immunotherapies in CLL. In MM, immuno-
modulatory drugs are a mainstay of therapy; therefore there 
was a clear need to determine the effects of GMB on the 
treatment outcome.

It was recently shown that the composition of harvest-
ed microbiota of newly diagnosed patients with MM differs 
from healthy individuals. Compared to a control group, fe-
cal species were abundant with nitrogen-recycling bacte-
ria such as Klebsiella and Streptococcus [20]. The mecha-
nism of dysbiosis in some MM patients is a result of renal 
insufficiency, which is one of the symptoms of MM [20]. 
Impaired renal function leads to the accumulation of me-
tabolites in serum, such as ammonium, which cannot be 
converted into urea, and hinder its excretion with urine. 

In MM, ammonium enters the GI tract and stimulates the 
outgrowth of nitrogen-recycling bacteria. The bacteria pre-
vent ammonium accumulation by hydrolysis of urea and 
uric acid in the GI tract and de novo synthesis of L-gluta-
mine promoted by Klebsiella [20]. In addition, glutamine 
is essential for the growth of MM cells and is known for its 
effect on tumorigenesis [21]. To assess the influence of ni-
trogen-recycling bacteria on the course of MM, fecal micro-
biota transplantation (FMT) of MM patients was performed 
on mice. Those mice which underwent FMT presented se-
vere progression of the disease [20].

Infections in MM are the leading cause of death and 
may significantly accelerate progression and reduce sur-
vival [22]. These findings suggest the potential role of an-
timicrobial strategies in MM, which could slow progression. 
The suggestion that GMB influences the progression of MM 
was confirmed by Calcinotto et al. [23]. In this study, com-
mensal bacteria contributed to the accumulation of cells 
producing interleukin (IL)-17 in the bone marrow and led to 
MM’s progression. Prevotella heparinolytica, a GMB com-
ponent, significantly enhanced the tumor and gut inflam-
mation. Additionally, activation of T cells resulted in their 
migration to the MM environment, and bone marrow en-
sued with eosinophil, which enhanced inflammation and 
consequently resulted in tumor progression. This event can 
be considered one of the factors responsible for the pro-
gression of smoldering MM to MM [23].

Proteasome inhibitors (PIs) are potent agents in the 
treatment of MM. Nevertheless, they present gastroin-
testinal adverse effects provoked by dysregulation of the  
NF-κB pathway. Therefore, it is vital to assess whether mi-
crobiota, which also influences the NF-κB pathway, may al-
leviate the side effects of PIs [24, 25]. Another side effect 
of PIs, mainly bortezomib, is severe peripheral neuropathy 
characterized by paraesthesia and reduced sensitization. 
Unfortunately, there is no prevention to PIs-induced neu-
ropathy, and aggravation of the symptoms often leads to 
tapering off or even withdrawal of PIs [26]. Little is known 
about the possible mechanism of PI-dependent polyneu-
ropathy; however, activation of astrocytes seems to induce 
hypersensitivity. Astrocyte activation may be initiated by 
various factors, including those outside the central ner-
vous system such as bacterial lipopolysaccharides (LPS), 
contributing to the activation of toll-like receptor 2 (TLR2) 
and then production of proinflammatory cytokines and che-
mokines. Interestingly, modulation of the process may be 
done by activating aryl hydrocarbon receptors located in 
astrocytes with tryptophan-derived ligand synthesized by 
Lactobacillus, Clostridium sporogenes, and Peptostrep-
tococcus [27]. However, this is only a hypothesis, and ex-
perimental studies are essential to verify if targeting GMB 
may actually alleviate PIs-induced peripheral neuropathy.

Minimal residual disease (MRD) status after autolo-
gous HSCT (auto-HSCT) in MM patients is the principal 
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factor indicative of outcome after the treatment. Intrigu-
ingly, Eubacterium halli has been found to be present in 
higher amounts among MRD(–) patients after auto-HSCT 
[28]. Therefore, it is clinically relevant to perform additional 
tests on larger groups to define more species associated 
with MRD, which could assess treatment efficacy during 
therapy [28].

Non-Hodgkin lymphoma

This heterogeneous group of diseases is influenced by 
microbiota in various manners. Manifold organisms may 
contribute to lymphomagenesis. Persistent inflammation in-
duced by Delftia, Chlamydophila psittaci, and Helicobacter 
pylori — commensal of approximately half of the human 
population, may be associated with MALT lymphoma in the 
conjunctiva, ocular region, and stomach respectively [15, 
29, 30]. Eradication of Helicobacter pylori and Chlamydoph-
ila psittaci with an antibacterial regimen results in regres-
sion of the lymphomas without chemotherapeutic agents 
[31, 32]. Interestingly, Helicobacter heilmannii induced 
lymphoma development in mouse models by the formation 
of infiltration of lymphocytes in the gastric mucosa [33]. 
Single reports have mentioned Borrelia burgdorferi infec-
tion preceding lymphomas [34, 35]. Ataxia–telangiectasia 
mice exposed to a more sterile environment had a reduced 
risk of lymphoma [36].

GMB influences not only lymphomagenesis but is es-
sential for anti-malignant effects of chemotherapeutics. 
Diffuse large B-cell lymphoma (DLBCL) is the most com-
mon type of lymphoma. DLBCL is linked to substantially 
poor outcomes; consequently, 40% of patients who de-
velop complete response will relapse. Great efforts have 
been made to understand the resistance to the treatment. 
There are hypotheses concerning altered tumor microen-
vironment, deficiency in immune cells, and upregulation 
of inhibitory checkpoint molecules [37]. Studies have re-
vealed that the GMB of patients with DLBCL differed sig-
nificantly before treatment completion [38]. Furthermore, 
aggressive DLBCL was characterized by more aberrant and 
reduced diversity than was indolent lymphoma [39]. Inter-
estingly, the patients who responded to immunotherapy 
tend to have higher pre-treatment diversity with a distinct 
composition of GMB and an abundance of Dorea formici-
generans (associated with indolent lymphoma) and Fae-
calibacterium prausnitzii, known for being related to the 
better response of melanoma to anti-programmed-cell 
death 1 (anti-PD1) immunotherapy [39]. The whole GMB 
composition has been considered a predictor of treatment 
response. The diversity of GMB has been altered by chemo-
therapy compared to baseline diversity before treatment, 
with a marked increase in Bacteroidetes and a concomi-
tant decrease in Firmicutes at the phylum level [39]. The 

group was small; however, similar studies performed on 
mouse models revealed that Bifidobacterium upregulat-
ed the level of tumor-specific CD8+ T cell and interferon γ 
secretion and, consequently, increased the sensitivity to 
anti-PD1 and antibody CTLA4 [40]. Conversely, antibiotics 
used one month prior to anti-PD1 therapy for epithelial tu-
mors resulted in lower OS (median 20.6 vs. 11.5 months, 
p <0.001) and PFS (median 4.1 vs. 3.5 months, p = 0.017) 
[40]. This needs to be further studied in a larger group of 
patients with lymphoma, as resistance to immunotherapy 
in melanoma patients has been overcome with probiotics 
and FMT [40, 41].

Attenuation of the efficacy of chemotherapy compris-
ing platinum salts observed in mouse models has been 
assessed clinically [42]. Accordingly, earlier use of an-
ti-Gram-positive antibiotics was associated with reduced 
PFS (median 2.3 vs. 11.5 months, p = 0.001) and OS (me-
dian 5.6 vs. 96.8 months, p <0.001) in a group of patients 
with relapsed lymphoma treated with platinum-based che-
motherapy [15]. Platinum genotoxicity needs reactive ox-
ygen species produced by tumor-associated inflammatory 
cells stimulated by commensals [42]. Additionally, dysbio-
sis guides chemoresistance to oxaliplatin, although in an 
unknown manner. On the contrary, in tumor cell lines in-
fected with Mycoplasma hyorhinis, degradation of gemcit-
abine and a decrease in the antitumoral efficacy induced by 
mycoplasma thymidine phosphorylase have been observed 
[43, 44]. Intra-tumor Gammaproteobacteria exerted the 
same effect, and ciprofloxacin’s administration reversed 
this effect and elicited anti-malignant activity of the drug 
[44]. There are more examples of other chemotherapeutics 
affected by bacteria; for instance, doxorubicin and cladrib-
ine activity were significantly decreased by Escherichia coli 
[16]. However, there has been a lack of clinical studies in-
vestigating the correlation of GMB composition with treat-
ment outcomes in hematological patients.

Moreover, doxorubicin is responsible for dysbiosis and 
affects the integrity of intestinal mucosa, which can lead 
to fatal infections [45]. Stimulation of NOD2, a critical part 
of the immune response, by bacterial muramyl dipeptide 
may have a protective role in mucosal damage induced 
by doxorubicin [45, 46]. Furthermore, GMB has alleviated 
the adverse effect of cisplatin. D-methionine, a prebiotic, 
has antioxidative and anti-inflammatory features and, by 
promoting the growth of Lachnospiracae and Lactobacil-
lus, can regulate microbiota and reverse cisplatin-induced 
ototoxicity [47, 48]. Therefore, a hypothesis arises that 
supplementation could help to avoid cardiac dysfunction 
and the ototoxic effect of cisplatin. A mouse-performed 
study showed that Lactobacillus supplementation allevi-
ated weight loss and cardiotoxicity evoked by cisplatin and 
reduced inflammation [49]. Moreover, in mouse models, 
an increase of Lactobacillus johnsonii was coherent with 
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delayed development of B-cell lymphoma and oral supple-
mentation was linked to decreased systemic inflammation 
and genotoxicity [50].

Further interesting findings concerned the accumula-
tion of one of the short-chain fatty acids (SCFAs) — butyr-
ate [51]. Mice fed with a high-fiber diet presented a raised 
level of butyrate and consequently had a significantly low-
er risk of lymphoma. Additionally, there was a correlation 
with tumor growth, as it may lead to apoptosis of lymphoma 
cells [51]. However, this finding must be treated with cau-
tion. Humans have altered the metabolism of SCFAs, and 
due to degradation in the liver it is undetectable in serum, 
so the anti-lymphoma effect might not be revealed [52].

Rituximab, an anti-CD20 antibody, markedly affects 
intestinal microbiota in mice. It is important to emphasize 
that after treatment with rituximab, GMB composition was 
reduced in Lactobacillus reuteri [53]. Consequently, the 
absence of Lactobacillus reuteri may be related to intes-
tinal damage, a severe adverse event of rituximab admin-
istration, and inflammatory cell infiltration in the gut mu-
cosa. As a result, administration of antibiotics can lead to 
rituximab-induced mucositis, and oral supplementation of 
Lactobacillus reuteri could restore the alleviating effect on 
gut inflammation [53].

A possible mechanism suggests hampering inflamma-
tory reactions by Lactobacillus reuteri. However, this in vi-
tro observation needs further confirmation via in vivo and 
clinical studies [53].

Hodgkin lymphoma

Undoubtedly, childhood plays a crucial role in determining 
GMB diversity because that is when the transition of Th2 
response to Th1 takes place. Notably, a study performed on 
adolescent/young adult Hodgkin lymphoma (HL) patients 
revealed that their total assemblage of microorganisms 
was less diverse than that of a healthy population [54]. 
Moreover, their Th1 response was suppressed while Th2 
was enhanced. This suggests that this immunological shift 
did not happen. Considering possible causes of this condi-
tion, less early-childhood fecal-oral exposure due to a more 
hygienic environment has been postulated as the primary 
cause [54]. First, however, it is vital to determine whether 
the less diverse microbiota is not an effect of previous 
therapy, which is a common cause of the impoverishment 
of commensals in an oncological patient [54].

Doxorubicin is one of the anthracyclines with a potent 
antitumor effect. However, its use is limited due to the in-
duction of cardiomyopathy. Additionally, the agent leads 
to dysbiosis. Interesting findings suggest that dysbiosis 
contributes to cardiotoxicity. In the analysis, antibiotics 
administered to mice resulted in depletion of the altered 
GMB, thus contributing to the alleviation of cardiac fail-
ure, inhibition of cardiac cell apoptosis, and decrease in 

cardiac enzymes activity [55]. FMT obtained a similar ef-
fect implemented a day after doxorubicin administration. 
Then attenuation of doxorubicin-induced dysbiosis and 
heart function improvement were assessed by left ven-
tricular ejection fraction, and loss of cardiac fibrosis was 
observed [56]. This must be evaluated in clinical practice, 
as it raises the possibility of dealing with anthracycline-in-
duced cardiotoxicity.

Programmed death-ligand 1 (PD-L1) blockade presents 
a highly remarkable outcome in classical HL [57]. Interest-
ingly, the responsiveness and effectiveness of anti-PD1 im-
munotherapy are significantly determined by GMB [58, 59]. 
This has been assessed clinically in patients with refractory 
melanoma, in whom FMT from responders to anti-PD1 ther-
apy to non-responders reprogrammed the resistance to an-
ti-PD1 [59]. Activated and differentiated CD8+ cells, more 
abundant in the tumor microenvironment of the responders, 
were the result of both immunotherapy of anti-PD-L1 and 
FMT, which combated myeloid-induced immunosuppression 
[59]. An extensive analysis performed on humans revealed 
that prior use of antibiotics was linked to a poorer outcome 
of immunotherapy [60]. There raises the question as to 
which moment is the most appropriate to implement antibi-
otics. One study indicated that one month prior was enough 
to diminish the effect of immunotherapy [61]. Hence, sim-
ilar studies should be performed in a population with HL 
to establish antimicrobial management in immunotherapy.

Specific bacterial species of Actinobacteria and Fir-
micutes, detected in patients with melanoma, have been 
responsible for improving the efficacy of PD-1 [41, 59]. In-
terestingly, responders had elevated levels of products of 
bacterial catabolism, which could be treated as biomark-
ers of microbiome diversity [62]. Notably, the products of 
catabolism correlated with the presence of taxa associat-
ed with response to anti-PD1 [59]. The establishment of 
key commensals in HL patients is relevant. Patients who 
are refractory to anti-PD-1 could be treated with FMT and 
gain response to immunotherapy [59]. It is worth noting 
that today’s trends for using supplementation probiotics by 
patients themselves may also lead to worsening response 
to treatment. Patients anticipating the therapy should be 
warned about the possible effects of using over-the-count-
er drugs on their own [63].

Hematopoietic stem cell transplantation

Although its severe complications such as graft-versus-host 
disease (GvHD) and engraftment syndrome, HSCT including 
autologous (auto-HSCT), haploidentical, and allogeneic (al-
lo-HSCT) types, remains a powerful method in a variety of 
hematological malignancies. The source of hematopoietic 
stem cells may be peripheral blood, bone marrow or um-
bilical cord [64]. HSCT is preceded by multiple procedures, 
chemotherapy, anti-infective treatment, and conditioning 
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which can alter the diversity and abundance of GMB, and 
consequently destroy the beneficial commensals [65]. Inter-
estingly, patients whose diversity or microbiota composition 
did not change significantly through the process of HSCT 
(both auto- and allo-) were characterized by fewer complica-
tions that contributed to better 2-year OS in contrast to the 
group with a loss of diversity with a mortality rate of 66.7% 
[65]. Moreover, antimicrobial prophylaxis is an inevitable 
part of the event due to the risk of neutropenic fever or 
infectious complications during the whole HSCT procedure. 
Nevertheless, studies have had contradictory results on the 
administration of antibiotics on gut microbial diversity. Ku-
sakabe et al. [65] suggested that carbapenems, cephems, 
and glycopeptides did not significantly contribute to the 
loss of diversity and alterations of GMB. Further studies 
are essential to evaluate correlations among antibiotics 
to assess the outcome of HSCT and OS and implement 
protocols in the course of HSCT. For instance, in allo-HSCT, 
rifaximin was linked to reduced 1-year transplant-related 
mortality and increased OS (log-rank = 0.008, p = 0.008), 
unlike ciprofloxacin and metronidazole, due to its protective 
feature on microbiota diversity, and did not affect the infec-
tious complications at the same time [66]. There is a need 
to evaluate similar studies for auto-HSCT. The effects of 
GMB on HSCT are summarized in Table II.

Autologous HSCT
Auto-HSCT accounts for approximately half of transplants 
in Europe. Nowadays, the main indications of auto-HSCT 
concern lymphoproliferative disorders. The recipient is 
simultaneously the donor of the stem cells, and the infu-
sion of stem cells is preceded by high-dose conditioning 
chemotherapy [64]. Unlike allo-HSCT, an association of 
GMB on auto-HSCT has not been fully elucidated. One of 
the most common complications of auto-HSCT is mucositis 
[84]. Intestinal barrier disruption leads to translocation and 
may induce bloodstream infections [85], which are the main 
cause of mortality and morbidity in HSCT patients [68, 86].

For a long time, scientists have tried to elucidate the 
pathogenesis of mucositis. However, few hypotheses pos-
tulated the importance of GMB due to its inhibitory effect 
on the NF-κB pathway and diminishing inflammatory cyto-
kines levels [86]. This was further confirmed in a group of 
patients with NHL receiving carmustine, etoposide, cyta-
rabine, and melphalan (BEAM) conditioning. Furthermore, 
depletion in Firmicutes members, influencing NF-κB path-
way and Acinetobacter members inhibiting inflammation 
were observed [67, 87]. Both species are responsible for 
butyrate production, which causes an anti-inflammatory 
effect by reducing intestinal permeability and attenuating 
chemotherapy-induced mucositis in mice [52, 88, 89]. On 
the other hand, Proteobacteria species were elevated and 
considered a biomarker of dysbiosis [67, 90]. This led to in-
testinal barrier disruption and the translocation of bacteria.

Interestingly, there is a correlation between bacteria di-
versity and complications related to auto-HSCT. High dose 
melphalan conditioning in plasmatic cell disorders affects 
the intestinal microbiota variety, and the detection of Blautia 
and Ruminococcus on day +7 is associated with enhance-
ment and severity of emesis after melphalan conditioning 
[69]. On the other hand, oral bacteriome at baseline was 
predictive of nausea, especially the presence of phyla Te-
nericutes which was regarded as a protective factor [69]. Ad-
ditionally, bacterial composition at baseline correlated with 
time to neutrophil engraftment [69]. Development of early 
culture-negative neutropenic fever was linked to oral fungal 
genus with the emphasis on Glomerella, whose presence 
negatively correlated with time to neutrophil engraftment 
(p = 0.03) [69]. The evaluation of diversity GMB through 
total procedure auto-HSCT showed only subtle changes of 
butyrate-producing bacteria and other commensals after 
auto-HSCT, apart from Lachnospiraceae, of which amounts 
substantially decreased [61]. Further studies on a larger 
group are essential to evaluate the possibility of species as 
a biomarker of complications due to auto-HSCT.

Allogeneic HSCT
In allo-HSCT, stem cells are harvested from related or un-
related donors. It is mainly used to treat acute leukemias 
and plays a minor role in lymphoproliferative disorders.

Multiple studies have indicated an unquestionable im-
pact of GMB diversity on allo-HSCT [73]. Loss of diversity 
in GBM is an inevitable event during allo-HSCT. Condition-
ing protocols, diet, intestinal mucositis, and antimicrobial 
prophylaxis lead to the impoverishment of beneficial spe-
cies and the enhancement of Enterococcus, associated 
with developing GvHD and GvHD-related mortality [65, 
70]. A few independent studies have suggested that pre-
HSCT microbiota seems to have no significant impact on 
the future outcome of HSCT, whereas GMB after HSCT is 
important from the very first day of transplant [65, 70, 72].

There is robust evidence that enhanced microbiota vari-
ability correlates with increased overall survival after HSCT, 
with a 3-year survival of 67% in a high diversity group as op-
posed to 36% for a low diversity group [73]. Peled et al. [71] 
indicated that the presence of Eubacterium limosum was 
associated with a reduced risk of relapse [hazard ratio (HR) 
0.82 per 10-fold increase in abundance; 95% confidence 
interval (CI), 0.71 to 0.95, p = 0.009]. Fungal commensals 
did not determine the efficacy of HSCT, although a higher 
density of Candida albicans was associated with a worse 
outcome depicted in lower OS (p = 0.0008), disease-free 
survival (p = 0.0064), and GvHD-free (p = 0.026) [72]. Low 
microbiota diversity, especially during the time of neutro-
phil engraftment, is significantly linked to worse outcomes 
contributing to increased transplant-related mortality, and 
can be considered an independent factor of allo-HSCT 
mortality (transplant-related mortality: adjusted HR 5.25, 
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p = 0.014) [73]. One analysis indicated that correlation in 
neutrophil, lymphocyte and monocyte populations during 
hematological recovery and microbiota dynamics, with re-
constitution of GMB, may have beneficial effects on white 
blood cell (WBCs) counts. Observation of patients who re-
ceived autologous FMT at the time of neutrophil engraft-
ments showed higher WBCs up to 100 days after FMT and 
further correlated with better survival. The striking effect 
of Staphylococcus on lymphocytes and Faecalibacterium 
on neutrophils has been observed; nevertheless, evalua-
tion of species responsible for the better efficacy of HSCT 
is relevant for clinical practice [74].

There is a need for better predictive biomarkers for the 
outcome of HSCT. Notably, increased urinary 3-indoxyl sul-
phate (3-IS), a fermented product of commensal colonic 
Clostridiales, and predicts outcomes after HSCT. Studies 
by Weber at al. revealed that low 3-IS levels within the first 
10 days after HSCT correlated with substantially increased 
transplant-related mortality (p = 5.017) and decreased OS 
(p = 5.05) one year after HSCT [66, 75] This may suggest 
that microbiota elements after HSCT could serve as bio-
markers of survival after HSCT.

Acute GvHD (aGvHD) is a severe complication of al-
lo-HSCT. Intestinal GvHD affects 54% of patients who de-
veloped aGvHD and significantly contributes to increased 
mortality among patients [91]. There are a few postulated 
mechanisms of aGvHD regarding microbiota disturbance 
as a possible factor [80]. Animal models of GvHD showed 
monodominance of Entereobacteriales with a concomitant 
decrease of Clostridiales. Interestingly, Clostridiales are im-
portant producers of SCFAs, including butyrate. Therefore, 
Clostridiales supplementation has been considered to alle-
viate gastrointestinal symptoms of GvHD [77]. In addition, 
butyrate serves as an energy source for intestinal epithelial 
cells, and it raises protected intestinal cells and mitigates 
intestinal effects of GvHD [76]. Another mechanism involv-
ing the protective role of butyrate in intestinal aGvHD out-
lined butyrate-induced enhancement of Treg cells and sub-
sequent restoration of intestinal cells. This resulted in the 
mitigation of both inflammation and GvHD [77]. Moreover, 
oral supplementation with fructooligosaccharide prebiotics 
resulted in the production of SCAFs, led to a proliferation 
of Tregs, and decreased the risk of GvHD [78].

Considering the mortality rate in aGvHD, biomarkers 
indicative of aGvHD may help stratify risk in patients. Fur-
thermore, it could be a key in the differential diagnosis be-
tween aGvHD and other HSCT complications [92]. Addition-
ally, the neutrophil recovery time is significant for predicting 
aGvHD and the presence of Actinobacteria and oral Firmic-
utes in the stool during neutrophil recovery time may serve 
as a biomarker of the development of severe aGvHD [79].

Intestinal mucositis leads to difficulties with oral in-
take, something which requires the implementation of 
parenteral nutrition. Consequently, this may contribute to 

malnourishment of intestinal cells and reduction in GMB 
diversity compared to enteral nourishment, eventually trig-
gering aGvHD [93]. Additionally, parenteral nutrition leads 
to the replenishment of Blautia, which has been associat-
ed with reduced GvHD mortality [HR (95% CI) 0.18 (0.05– 
–0.63), p = 0.007] and beneficial for OS (p <0.001) [94].

Chimeric antigen receptor T-cell

CD19-targeted chimeric antigen receptor-modified (CAR) 
T-cell is a novel therapy registered in lymphoproliferative 
disorders that is revolutionizing current management. In 
the long term, CD19-targeted CAR T-cell therapy is inef-
ficacious in most patients who relapse or develop CAR-T- 
-related toxicity [82]. Considering bacterial effects on other 
immunotherapy mentioned in HL [59–61], it seems highly 
probable that there is a correlation between CAR-T and 
GMB. GMB may be one of the determinants responsible for 
the failure of CAR-T therapy, although little is known yet on 
this subject. Nevertheless, recent articles have suggested 
that microbiota and antibiotics do influence CAR-T therapy. 
Schubert et al. [81] put forward an interesting hypothesis 
suggesting that overgrowth of Enterococci in intestines may 
lead to severe cytokine release syndrome (CRS) induced 
by CAR-T. Direct stimulation of Enterococci to TLR2 recep-
tors, which enables co-stimulatory signal enhancing the 
production of IL-2, TNFα and IFNγ in murine and human 
CD8+ T cells, contributed to an increase in polyfunctional 
T cells against tumor cells and the possibility of CRS [81, 
82]. Investigations performed on mice suggested that 
long-term broad-spectrum antibiotics therapy contributing 
to loss in bacterial diversity did not influence the outcome 
of CD19-CAR-T. This is only partially consistent with a ret-
rospective study concerning the use of antibiotics on the 
efficacy of CD19 CAR-T [95]. Implementation of piperacillin/ 
/tazobactam, imipenem/cilastatin and meropenem therapy 
four weeks prior to CAR-T CD19 correlated with reduced 
OS in patients with NHL (HR = 1.71, p = 0.011) [83]. Sig-
nificantly, antibiotics seemed to have no impact on PFS 
in that cohort. Besides the influence on OS, exposure to 
these antibiotics was associated with increased immune 
effector cell-associated neurotoxicity syndrome; however, 
no correlations with CRS were seen [83]. The impact of GMB 
on CAR-T is set out in Table II. Further studies concerning 
microbiota’s influence on CAR-T efficacy are essential.

Conclusions and perspectives for future

GMB is thought to have tremendous effects on chemother-
apy efficacy and outcomes by cooperating with the immune 
system [13, 15, 59]. However, since many of these results 
have been obtained from in vitro or in vivo experiments 
or retrospective patient cohorts, it would be essential to 
confirm and quantify the influence of GMB on the effects 
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of chemotherapeutic agents, immunotherapy, and HSCT in 
prospective clinical trials.

In the future, determining the composition of GMB pri-
or to and during treatment may be helpful in further man-
agement. Moreover, GMB can serve as a biomarker for 

patients especially at risk of poor outcomes, and may lead 
to modifications in their treatment protocol or antimicrobi-
al prophylaxis [39, 62].

Therefore, every effort should be made to maintain mi-
crobiota’s primary composition and abundance. However, 

Table II. Summary of known effects of gut microbiota on efficacy and toxicity of cellular therapies used in lymphoproliferative diseases

Organism Mechanism and/or clinical relevance

Auto-HSCT
Firmicutes and Acineto-
bacter

Depletion results in loss of butyrate production

Butyrate reduces intestinal permeability leading to anti-inflammatory effect and as a result attenuates 
chemotherapy-induced mucositis in mice

Depletion led to enhancing mucositis [67]
Proteobacteria Increased amount during dysbiosis

Increased amount may be considered as a biomarker of dysbiosis [67, 68]

Blautia and Ruminococcus Presence on day +7 was associated with enhancement and severity of emesis after melphalan condi-
tioning, biomarker of emesis after melphalan conditioning [69]

Tenericutes Presence is considered a protective factor against nausea [69]
Glomerella Presence negatively correlated with time to neutrophil engraftment, and development of early culture-

-negative neutropenic fever [69]

Allo-HSCT

Enterococcus Increased amount associated with development of GvHD and GvHD-related mortality, conditioning proto-
cols, diet, intestinal mucositis, and antimicrobial prophylaxis enhanced amount of Enterococcus [65, 70]

Eubacterium limosum Presence associated with reduced risk of relapse after allo-HSCT [71]
Candida albicans Higher density was associated with worse outcomes of HSCT [72]
Low diversity of microbiota 
in time of neutrophil en-
graftment

Increased transplant-related mortality, independent factor of allo-HSCT mortality [73], autologous FMT 
in time of neutrophil engraftments correlated with better 3-year survival [74]

Clostridiales A urinary 3-indoxyl produced by Clostridiales was predictive of outcome after HSCT [75]

Responsible for production of butyrate, which acts as an energy source for intestinal 
epithelial cells and mitigates intestinal effects of GvHD [76]

Butyrate-induced enhancement of Treg cells and restoration of intestinal cells, mitiga-
tion of inflammation and GvHD [77], oral supplementation with fructooligosaccharide 
prebiotics resulted in production of SCAFs, led to proliferation of T regulators, and the-
refore, decreased risk of GvHD [78]

Clostridiales supplementation was considered to alleviate gastrointestinal symptoms 
of GvHD [77]

aGvHD

Actinobacteria and Firmi-
cutes 

Presence in stool during neutrophil recovery time may serve as a biomarker of deve-
lopment of severe aGvHD [79]

Blautia Presence beneficial for OS, associated with reduced GvHD mortality [80]

CAR-T

Enterococci Overgrowth of Enterococci leads to direct stimulation of TLR2 receptors, enhancement of IL-2, TNFα, 
IFNγ and CD8+ T cells production and severe CRS [81, 82]

Ruminococcus, Bacteroi-
des and Faecalibacterium 

Higher amount associated with a complete response at day 100

Implementation of piperacillin/tazobactam, imipenem/cilastatin and meropenem (PIM) four weeks 
prior to CAR-T CD19 correlated with reduced OS and increased risk of neurotoxicity syndrome; no corre-
lations with CRS were seen [83]

Veillonellales Higher abundance associated with a decreased complete response at day 100 [83]
HSCT — hematopoietic stem cell transplant; auto-HSCT — autologous hematopoietic stem cell transplantation; allo-HSCT — allogeneic hematopoietic stem cell transplantation; GvHD — graft-versus-host 
disease; FMT — fecal microbiota transplant; SCFAs — short-chain fatty acids; Treg cells — regulatory T cells; aGvHD — acute graft-versus-host disease; OS — overall survival; CAR-T therapy — chimeric antigen 
T-cell receptor-modified therapy; TLR2 — Toll-like receptor 2; IL-2 — interleukin 2; TNFα — tumor necrosis factor alpha; IFNγ — interferon gamma; CRS — cytokine release syndrome
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therapeutic interventions with modifications to reestablish 
baseline GMB composition such as FMT should be consid-
ered in situations resulting in dysbiosis.

By way of illustration, FMT augmented anti-PD-1 immu-
notherapy and had excellent outcomes in patients with ste-
roid-refractory or dependent type aGvHD as a second-line 
treatment with or without ruxolitinib [96, 97].
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