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Abstract
Therapy with the use of chimeric antigen receptor T-cell (CAR T-cells) is one of the most modern medical technologies 
in hemato-oncology, using, thanks to the advances in molecular biology, natural anti-cancer immune mechanisms. 
Nowadays, it is an extremely effective complement to conventional treatment and hematopoietic cell transplantation. 
Ongoing clinical trials show the enormous potential of this treatment beyond hemato-oncology. We discuss in this 
paper the potential use of Artificial intelligence (AI) in this setting. AI has been at the cutting edge of science in recent 
years. It has spread from computer science to areas like medicine, economics, finance and business. The use of and 
research into AI in medicine have become prominent due to its versatility and capabilities.
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Artificial intelligence — introduction

In recent decades, the topic of artificial intelligence (AI) has 
been on the cutting edge of science. It has spread from 
computer science to areas including medicine, economics, 
finance and business. With ever-improving technology 
year-on-year, its uses and applications have significantly 
expanded. However, to evaluate the use of this technology 
in CAR T-cell therapy, it is crucial to present an overview of 
the technology. Currently, there is no scientific consensus 
on a singular definition of AI, due to its broadness and 
complexity.

For the purposes of an overview, the ‘Oxford Dictionary 
of Phrase and Fable’ definition is sufficient: “the theory and 
development of computer systems able to perform tasks 
normally requiring human intelligence, such as visual per-
ception, speech recognition, decision-making, and trans-
lation between languages”. AI can be categorized into gen-
eral AI and narrow AI, with the former being able to mimic 

human intelligence and its ability to adapt and solve an ar-
bitrary problem and the latter being specialized in perform-
ing a specific task (IBM Cloud Education, 2020, https://
www.ibm.com/cloud/learn/what-is-artificial-intelligence). 
Currently, general AI has not been achieved, while narrow 
AI is being actively utilized. AI can be, and is, used without 
employing machine learning algorithms, and this subtype 
is categorized as Symbolic Artificial Intelligence or Good 
Old Fashioned Artificial Intelligence (GOFAI); however, ma-
chine learning algorithms have become more prevalent in 
medical applications. Machine learning is a technique in 
artificial intelligence characterized by the use of algorithms 
and statistics that allow the self-improvement of a program. 
A subset of machine learning is neural networks, which are 
structures based on interconnected neurons or nodes in 
a layered structure comprising an input layer, hidden layers, 
and an output layer. These nodes pass information from 
one to another through weighted connections based on ac-
tivation, or lack of it, in the previous layer. By manipulating 
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the activation thresholds of nodes and weights associat-
ed with each connection, the network can be optimized to 
achieve greater accuracy. A further subset of neural net-
works is deep learning algorithms, defined as neural net-
works with more than three layers.

Neural networks allow for the processing of unstruc-
tured data, making them more autonomous and allowing 
the use of data such as images or text (IBM Cloud Educa-
tion; 2020, https://www.ibm.com/cloud/learn/neural-net-
works; Kavlakoglu E., AI vs. Machine Learning vs. Deep 
Learning vs. Neural Networks: What’s the Difference? 
2020 https://www.ibm.com/cloud/blog/ai-vs-machine-
learning-vs-deep-learning-vs-neural-networks). These 
machine learning algorithms can be further divided into 
four types: supervised, unsupervised, semi-supervised, 
and reinforcement learning. The first three are defined 
according to the training data used, where supervised 
learning utilizes labeled datasets, unsupervised learning 
utilizes unlabeled datasets, and semi-supervised learning 
uses a combination of the two. The use of labeled training 
data allows the machine learning algorithm to check its 
output against the correct answer, although it is limited 
by the cost and time required to label the dataset by ex-
perts. Nevertheless, this is the most commonly used type 
in medical imaging [1].

In contrast, unsupervised machine learning trains on 
unlabeled data and utilizes methods such as clustering to 
find parallels between elements in the dataset and group 
them (Delua J., Supervised vs. Unsupervised Learning: 
What’s the Difference? 2021, https://www.ibm.com/cloud/
blog/supervised-vs-unsupervised-learning). Semi-super-
vised learning is a method that uses both types of data, pos-
sibly improving the algorithm’s accuracy on a smaller set 
of labeled data, overcoming the limitations of supervised 
learning. This method is of particular interest in medical 
imaging where labeled datasets are expensive to produce, 
although employing unlabeled datasets may result in de-
creasing the accuracy of the algorithm [2]. Reinforcement 
learning is a method based on trial and error, where desired 
outcomes are rewarded or reinforced. It is characterized by 
states embedded within an environment, in which certain 
actions are allowed, and based on the interaction with the 
environment-specific actions on specific states are reward-
ed allowing improvement with repeated trials. Due to the 
sequential nature of the algorithm, it is used in dynamic 
treatment strategies, where the state of the patient has to 
be periodically evaluated and adjusted [3, 4].

Artificial intelligence in medicine

The use and research of AI in medicine have become promi-
nent due to its versatility and capabilities.. One of the areas 
with the most promising use of AI is radiology, due to the 
image processing capabilities of neural networks. Rajpurkar 

et al. [5] have developed a neural network, CheXNet, that 
is more accurate at diagnosing 14 thoracic diseases than 
expert radiologists, although in the study neither CheXNet 
nor the radiologists had access to patient history.

Machine learning algorithms are also being developed 
and tested in genome-wide association studies (GWAS), 
where they show promise in finding causal genes in car-
diovascular disease-associated loci [6]. Moreover, AI has 
also shown possibilities in real-time treatment applications 
in the treatment of sepsis with the development of a Tar-
geted Real-time Early Warning Score (TREWS) algorithm, 
which identifies patients with sepsis significantly quicker 
than competing warning systems, allowing earlier treatment 
and potentially improving patient outcomes [7].

Artificial intelligence in CAR T-cell therapy

Therapy with chimeric antigen receptor T-cell (CAR T-cells) 
is a modern, technologically advanced method of cancer 
treatment based on adoptive cellular immunotherapy. 
The treatment process uses the patient’s own autologous 
T-cells, which are genetically manipulated ex vivo to express 
the tumor antigen-specific CAR receptor. T lymphocytes 
reprogrammed in this way, after intravenous administration 
to the patient, expand, recognize cancer cells, and destroy 
them. The antigens used so far as targets for modified T 
lymphocytes are CD19 on B lymphocytes and BCMA (B-cell 
maturation antigen) on plasmocytes, which allowed the 
registration of CAR T-cells products for the treatment of 
B-cell lymphomas, B-cell acute lymphoblastic leukemia 
and multiple myeloma [8–13]. Nowadays, this is an ex-
tremely effective complement to conventional treatment 
and hematopoietic target transplantation. Ongoing clinical 
trials show the enormous potential of this treatment, going 
beyond hemato-oncology.

Chimeric antigen receptor T-cells can produce durable 
remission in hematological malignancies not respond-
ing to standard therapy. Recently published and ongoing 
studies indicate high efficacy of the treatment in early 
disease phases, depending on the diagnosis. The treat-
ment is associated however with a unique profile of tox-
icities that may limit its use [14]. On the other hand, CAR 
T-cells therapy is a very expensive treatment, and addi-
tionally requires the time and involvement of the latest 
technology to produce it [15]. Therefore, it seems that 
both the qualification for CAR T-cells therapy, as well as 
monitoring and possible interventions after the treatment, 
should be very precise.

From a clinical point of view, Artificial Intelligence could 
be used to combine biomarkers associated with CAR T-cells’ 
response to built robust prognostic/predictive models. One 
challenge is that building robust models using AI requires 
the creation of large datasets, hence the need to aggre-
gate data from multiple institutions to avoid overfitting. 
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Deep learning could contribute to determining the radio-
mics signature correlated with survival.

Several simple factors have been proven to be relevant 
to predict response to CAR T-cells therapy: Eastern Cooper-
ative Oncology Group (ECOG) performance status, lactate 
dehydrogenase (LDH), C-reactive protein (CRP), and platelet 
(PLT) number. With AI, analysis of more sophisticated pa-
rameters is possible: tumor mutational burden; alteration 
in antigen presenting pathways; downregulation or tumor 
antigen loss; tumor microenvironment; and exhausted (se-
nescent) phenotype. This data could be helpful in appropri-
ate qualification to therapy, response prediction, relapse 
risk and timing (early vs late relapse) [16].

Deep learning could contribute to determining the ra-
diomics signature correlated with survival.

Due to the availability of routinely performed imaging 
studies, and correlations of images with underlying biological 
processes, radiomics may serve as a new predictive tool in 
immune-oncology in the near future. Apart from the non-in-
vasive identification of potential responders to therapy, ad-
dressing resistance mechanisms as well as the visualization 
of drug distribution and of the tumor microenvironment are 
major goals of radiomics in immune-oncology. Radiomics is 
based on common imaging modalities such as computed 
tomography (CT), positron emission tomography (PET), and 
magnetic resonance imaging (MRI). It aims to extract a large 
number of quantitative features from medical images using 
data-characterization algorithms. These features, termed 
‘radiomic features’, have the potential to uncover tumoral 
patterns and characteristics that fail to be appreciated by 
the naked eye. This may be useful for predicting prognoses 
and therapeutic responses for various cancer types, thus 
providing valuable information for personalized therapy.

Perspectives of AI in CAR T-cell therapy

AI offers potentially endless possibilities in CAR T-cells 
therapy:

■■ creating virtual models to analyze safety;
■■ creating virtual models to analyze efficacy;
■■ developing a lymphodepleting treatment that ensures 

safety and efficacy by influencing the expansion of 
CAR T-cells;

■■ novel cancer-associated antigens;
■■ the possibility of designing new molecules.
■■ The medical community should however always bear 

in mind the potential hazards of AI.

Authors’ contributions
LG, MG — equal.

Conflict of interest
The authors declare no conflict of interest.

Financial support
The authors declare no financial support for this work.

Ethics
The work described in this article has been carried out in 
accordance with The Code of Ethics of the World Medical 
Association (Declaration of Helsinki) for experiments involv-
ing humans; EU Directive 2010/63/EU for animal exper-
iments; uniform requirements for manuscripts submitted 
to biomedical journals.

References

1.	 Erickson BJ, Korfiatis P, Akkus Z, et al. Machine learning for medi-
cal imaging. Radiographics. 2017; 37(2): 505–515, doi: 10.1148/
rg.2017160130, indexed in Pubmed: 28212054.

2.	 Zhou ZH. Machine learning. Springer, Singapore 2021.
3.	 Jonsson A. Deep reinforcement learning in medicine. Kidney Dis 

(Basel). 2019; 5(1): 18–22, doi: 10.1159/000492670, indexed in 
Pubmed: 30815460.

4.	 Zhang Z. written on behalf of AME Big-Data Clinical Trial Collaborative 
Group. Reinforcement learning in clinical medicine: a method to op-
timize dynamic treatment regime over time. Ann Transl Med. 2019; 
7(14): 345, doi: 10.21037/atm.2019.06.75, indexed in Pubmed: 
31475215.

5.	 Rajpurkar P, Irvin J, Ball RL, et al. Deep learning for chest ra-
diograph diagnosis: a retrospective comparison of the CheXNeXt 
algorithm to practicing radiologists. PLoS Med. 2018; 15(11): 
e1002686, doi: 10.1371/journal.pmed.1002686, indexed in 
Pubmed: 30457988.

6.	 Nicholls HL, John CR, Watson DS, et al. Reaching the end-game for 
GWAS: machine learning approaches for the prioritization of com-
plex disease loci. Front Genet. 2020; 11: 350, doi: 10.3389/fge-
ne.2020.00350, indexed in Pubmed: 32351543.

7.	 Saria S, Henry K, Soleimani H, et al. Lead time and accuracy of trews, 
a machine learning-based sepsis alert. Critical Care Medicine. 2021; 
50(1): 717, doi: 10.1097/01.ccm.0000812040.29026.cb.

8.	 Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children 
and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 
2018; 378(5): 439–448, doi: 10.1056/NEJMoa1709866, indexed in 
Pubmed: 29385370.

9.	 Schuster SJ, Bishop M, Tam C, et al. Tisagenlecleucel in adult relap-
sed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2019; 
380(1): 45–56, doi: 10.1056/nejmoa1804980.

10.	 Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR 
T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017; 
377(26): 2531–2544, doi: 10.1056/NEJMoa1707447, indexed in 
Pubmed: 29226797.

11.	 Munoz JL, Wang Y, Jain P, et al. KTE-X19 CAR T-cell therapy in relapsed 
or refractory mantle-cell lymphoma. N Engl J Med. 2020; 382(14): 
1331–1342, doi: 10.1056/NEJMoa1914347, indexed in Pubmed: 
32242358.

12.	 Abramson JS, Palomba ML, Gordon LI, et al. Lisocabtagene maraleucel 
for patients with relapsed or refractory large B-cell lymphomas (TRANS-
CEND NHL 001): a multicentre seamless design study. Lancet. 2020; 
396(10254): 839–852, doi: 10.1016/S0140-6736(20)31366-0, 
indexed in Pubmed: 32888407.

http://dx.doi.org/10.1148/rg.2017160130
http://dx.doi.org/10.1148/rg.2017160130
https://www.ncbi.nlm.nih.gov/pubmed/28212054
http://dx.doi.org/10.1159/000492670
https://www.ncbi.nlm.nih.gov/pubmed/30815460
http://dx.doi.org/10.21037/atm.2019.06.75
https://www.ncbi.nlm.nih.gov/pubmed/31475215
http://dx.doi.org/10.1371/journal.pmed.1002686
https://www.ncbi.nlm.nih.gov/pubmed/30457988
http://dx.doi.org/10.3389/fgene.2020.00350
http://dx.doi.org/10.3389/fgene.2020.00350
https://www.ncbi.nlm.nih.gov/pubmed/32351543
http://dx.doi.org/10.1097/01.ccm.0000812040.29026.cb
http://dx.doi.org/10.1056/NEJMoa1709866
https://www.ncbi.nlm.nih.gov/pubmed/29385370
http://dx.doi.org/10.1056/nejmoa1804980
http://dx.doi.org/10.1056/NEJMoa1707447
https://www.ncbi.nlm.nih.gov/pubmed/29226797
http://dx.doi.org/10.1056/NEJMoa1914347
https://www.ncbi.nlm.nih.gov/pubmed/32242358
http://dx.doi.org/10.1016/S0140-6736(20)31366-0
https://www.ncbi.nlm.nih.gov/pubmed/32888407


www.journals.viamedica.pl/acta_haematologica_polonica 179

Lidia Gil, Maksymilian Grajek, AI in CAR T-cell

13.	 Munshi NC, Anderson LD, Shah N, et al. Idecabtagene vicleucel in re-
lapsed and refractory multiple myeloma. N Engl J Med. 2021; 384(8): 
705–716, doi: 10.1056/NEJMoa2024850, indexed in Pubmed: 
33626253.

14.	 Gil L, Łojko-Dankowska A, Matuszak M, et al. CAR-T cell therapy — toxi-
city and its management. Acta Haematol Pol. 2020; 51(1): 6–10, doi: 
10.2478/ahp-2020-0003.

15.	 Chomienne C, Sierra J, Einsele H, et al. EHA Guidance. The process of 
CAR-T cell therapy in Europe. HemaSphere. 2019; 3(4).

16.	 Hayden PJ, Roddie C, Bader P, et al. Management of adults and chil-
dren receiving CAR T-cell therapy: 2021 best practice recommenda-
tions of the European Society for Blood and Marrow Transplantation 
(EBMT) and the Joint Accreditation Committee of ISCT and EBMT 
(JACIE) and the European Haematology Association (EHA). Ann Oncol. 
2022; 33(3): 259–275, doi: 10.1016/j.annonc.2021.12.003, indexed 
in Pubmed: 34923107.

http://dx.doi.org/10.1056/NEJMoa2024850
https://www.ncbi.nlm.nih.gov/pubmed/33626253
http://dx.doi.org/10.2478/ahp-2020-0003
http://dx.doi.org/10.1016/j.annonc.2021.12.003
https://www.ncbi.nlm.nih.gov/pubmed/34923107

