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Abstract
Over the years, not only have the T-cell mediated immune mechanisms of aplastic anemia (AA) involved in AA develop-
ment started to become better understood, but there is now also a better understanding of the roles played by somatic 
mutations, cytogenetic abnormalities and defective telomerase functions and other genetically-related factors.
Somatic gene mutations suggestive of clonal hematopoiesis are detected in approximately one third of patients with 
AA. Recent studies have suggested that some of these may predict a better response to immunosuppressive therapy, 
whereas others indicate poorer outcomes with higher risks of clonal evolution to myelodysplastic syndrome or acute 
myeloid leukemia, and that therefore better results may be obtained based on allogeneic stem cell transplantation. Fur-
thermore, recent advances in molecular techniques may be useful in differentiating aplastic anemia from hypocellular 
myelodysplastic syndrome and other clonal hematopoiesises of indeterminate potential. All of these are summarized in 
this review which includes further insights into treatment personalization based on the molecular pathogenesis of AA.
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Introduction

Aplastic anemia (AA) is a rare form of bone marrow failu-
re caused by autoimmune destruction of hematopoietic 
progenitor stem cells with a clinical picture dominated by 
pancytopenia [1, 2].

For many years, it was thought to be based solely on 
the response of T-cell mediated immune mechanisms 
to toxic agents, including cytotoxic drugs, some medi-
cations, irradiation, toxins or infections such as viruses 
[3, 4]. In the majority of cases, some genetic abnormali-
ties are also relevant. In all cases, an extensive differen-
tial diagnostic work-up should be performed (Table I) to 
exclude other pancytopenia causes (Table II) and thus to 
establish the diagnosis of AA. The appropriate decisions 

and choices of therapy, along with an assessment of risk 
stratification, are based on the Camitta classification of 
AA (Table III) [5–7].

The incidence of AA is, on average, 2 cases per million 
in Europe. The incidence is roughly three times higher in 
Asia, which may indicate some genetic or environmental 
factors [8–11]. Several hypotheses have been proposed 
to explain why the incidence of AA is higher in Asia than in 
Europe and North America, but the most probable seems 
to be host genetics such as HLA types and nucleotide poly-
morphisms in some cytokine genes [12]. There is no diffe-
rence in the incidence of AA between men and women, but 
as most cases are observed before the age of 40, a genetic 
predisposition to AA has been suggested. Although clonal 
evolution of AA to paroxysmal nocturnal hemoglobinuria 
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(PNH), hypocellular myelodysplastic syndrome (MDS) or 
acute myeloid leukemia (AML) is often observed [13], co-
-existing somatic mutations may predispose to this process.

Irrespective of the identification of the cause of pancy-
topenia in the course of AA, the responses to immunosup-
pressive treatment confirm the thesis of autoimmune in-
jury to hematopoietic stem cells and stem cell progenitors 
[14–16]. The primary role of T-cell cytotoxic lymphocytes 
along with the additional effect of interferon gamma and 
tumor necrosis factor (TNF) on the inhibition of hematopoi-
etic stem cell (HSC) production together with an increasing 
FAS receptor expression (the first sign of apoptosis) all con-
tribute to immune-mediated destruction of HSCs [17–22]. 
The human leukocyte antigen (HLA) genes play key roles 
in mediating the immune response, especially HLA class 
II alleles. A Chinese study identified HLA-DRB1, DQB1 and 
DPB1 alleles predisposing to AA development [23]. The 
dysfunction of T regulatory cells is increased NK cells and 
autoantibodies, which are also involved in HSC immune 
destruction in AA [24–28].

Inherited bone marrow failure syndromes

Several genetic disorders including Schwachman-Diamond 
syndrome (which leads to a reduction in hematopoietic 
stem cells’ ability to repair DNA because of genetic lesions), 
congenital amegakaryocytic thrombocytopenia (MPL gene), 
Diamond Blackfan anemia (SBDF gene), Fanconi anemia, 
some GATA2 spectrum disorders, congenital keratosis, 

SRP72, and congenital pure red cell aplasia have all been 
identified as familiar cases of AA [29–34]. Careful history-
-taking and physical examinations may be helpful in the 
identification of germ-like genetic bone marrow failure 
disorders associated with AA and included in differential 
diagnostics in children, adolescents and young adults 
(Table IV) [6, 35]. Next-generation sequencing technolo-
gies have facilitated the discovery of mutations that cause 
pancytopenia and lead to aplastic anemia. All of them carry 
a high risk of MDS/AML, and some of them are associated 
with an especially high risk of a range of solid tumors. Thus 
a tailored stem cell transplantation regimen, such as redu-
ced intensity conditioning, may be the optimal treatment. 
This is especially true for Fanconi anemia, dyskeratosis 
congenita, Diamond Blackfan anemia, and Shwachman-
-Diamond syndrome, not only because of the high risk of 
clonal evolution, but also due to the high risk of morbidity 
and mortality [36–38].

Table I. Proposed diagnostic procedures for aplastic anemia (AA)

Category Tests

Peripheral blood testing CBC, differential, reticulocyte 
count

Flow cytometry for PNH

Bone marrow examination Bone marrow smear

Flow cytometry

Cytogenetics

Trephine biopsy

Rheumatoid disease 
screening

Antinuclear antibodies

Rheumatoid factor

Liver function tests ALT, AST, bilirubin serum levels

Viral infection testing HBV, HCV, EBV, CMV, HHV-6, 
HIV, parvovirus B19

Visual imaging CT, PET-CT, MRI, US for sear-
ching solid tumors and lympho-
proliferative neoplasms

CBC — complete blood count; PNH — paroxysmal nocturnal hemoglobinuria; ALT — alanine amino-
transferase; AST — aspartate aminotransferase; HBV — hepatitis B virus; HCV — hepatitis C virus; 
EBV — Epstein-Bárr virus; CMV — cytomegalovirus; HHV-6 — human herpesvirus 6; HIV — human 
immunodeficiency virus; CT — computed tomography; PET-CT — positron emission tomography-
-computed tomography; MRI — magnetic resonance imaging; US — ultrasonography

Table II. Differential diagnosis of aplastic anemia

Infectious diseases Cancers Other

HBV, HCV

EBV, CMV

HHV-6

HIV

Parvovirus B19

Mycobacterial in-
fections

MDS

AML

Myelofibrosis

ALL

NHL

HCL

Solid tumor meta-
stases

Megaloblastic 
anemia

PNH

HLH

HBV — hepatitis B virus; HCV — hepatitis C virus, EBV — Epstein-Bárr virus; CMV — cytomegalovi-
rus; HHV-6 — human herpesvirus 6; HIV — human immunodeficiency virus; MDS — myelodysplastic 
syndrome; AML — acute myeloid leukemia; ALL — acute lymphoblastic leukemia; NHL — non-
-Hodgkin lymphoma; HCL — hairy cell leukemia; PNH — paroxysmal nocturnal hemoglobinuria; 
HLH — hemophagocytic lymphohistiocytosis

Table III. Camitta criteria for aplastic anemia stratification

Stage Criteria

Severe aplastic 
anemia (SAA)

Bone marrow cellularity <25% (or 25– 
–50% with <30% residual hemato-
poietic cells), plus at least two of the 
following peripheral blood findings:
• neutrophils <0.5 × 109

• platelets <20 × 109/L
• reticulocytes <20 × 109/L

Very severe apla-
stic anemia (VSAA)

As SAA, but neutrophils less than  
0.2 × 109/L

Non-severe apla-
stic anemia (NSAA)

Criteria for SAA or VSAA not fulfilled 
and decreased bone marrow cellula-
rity, plus at least two of the following 
peripheral blood findings:
• neutrophils <1.5 × 109

• platelets <100 × 109/L
• hemoglobin <10 g/dL
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Somatic mutations in AA

Recurrent mutations and variants have been detected in up 
to 50% of patients with AA using targeted next generation 
sequencing hematopoiesis [39–42]. Although some of 
these mutations are limited to AA, such as PIGA [43] and 
BCOR/BCORL1 mutations, others are frequently found 
in myeloid malignancies, including ASXL1 and DNMT3A. 
Moreover, DNMT3A-mutated and ASXL1-mutated clones 
tend to increase in size over time, whereas BCOR- and 
BCORL1-mutated and PIGA-mutated clones decrease or 
remain stable [44].

Impact of somatic mutations on outcomes

Several reports have evaluated the clinical significance of 
somatic mutations in AA. Firstly, it has been shown that 
the response to immunosuppressive therapy is better in 
patients with PIGA, BCOR and BCORL1 mutations [45]. 
In the study by Hosokawa et al. [45], the presence of 
increased glycosylphosphatidylinositol-anchored protein-
-deficient cells correlated with a positive response to 
immunosuppressive therapy and prognosis, and thus 
was found helpful in choosing the optimal treatment for 
trisomy +8 patients with AA or low-risk MD. Although the 
natural history of AA patients with PNH clones has been 
studied, no impact on progression to symptomatic PNH 
or transformation to AML/MDS has been observed [46]. 
Furthermore, higher rates of overall and progression-free 
survival have been found in these subgroups of mutations 
[44]. However, other somatic mutations such as DNMT3A 
and ASXL1 are associated with worse outcomes. Recently, 

a study into mutation status and the differences between 
severe and non-severe AA by Patel et al. [47] detected at 
least one mutation in 19% of patients with AA at the time of 
diagnosis, independent of the severity of the AA. However, 
patients with severe AA had a higher mutation rate com-
pared to moderate AA (56% vs. 19%), which corresponds 
to the unstable hematopoietic clones and higher risk of 
clonal evolution [47].

Finally, the effect of somatic mutations on a higher risk 
of progression to MDS/AML was revealed by Kulasekararaj 
et al. [42]. Furthermore, other specific mutations are likely 
predictors of secondary MDS [48]. The effect of the therapy 
applied also influences the mutational status, and BCOR/ 
/BCORL1 mutations may expand during the course of IST 
[48]. Negoro et al. demonstrated that, in serial samples 
of AA without evolution to MDS, clones with GATA2, PHF6, 
RUNX1, SMC3, TET2 and BCORL1 mutations decreased in 
size during the course of AA, whereas ASXL1, CALR, CUX1, 
ETV6, EZH2, G3BP1, RIT1, U2AF1, and ZRSR2 expanded. 
In contrast, DNMT3A, BCOR, and CEBPA clones showed in-
dividually variable behavior with regard to clonal dynamics 
[48]. Lastly, Negoro et al. [48] also demonstrated the clinical 
impact of MDS-driver mutations found in AA at presentation, 
which transformed to MDS and had a shorter median pro-
gression-free survival and overall survival compared to cases 
without such somatic alterations. Other researchers have po-
stulated that clonal dynamics might be highly variable and 
may not predict response to therapy in individual patients.

Telomerases abnormalities

Telomere shortening is found in up to 35% of patients with 
AA [49, 50]. It is known that this can result in chromosomal 
instability and may lead to evolution to MDS/AML [51]. 
To resist the attrition, germ-like cells utilize telomerase 
reverse transcriptase (TERT), telomerase RNA component 
(TERC) telomerase genes, and the stabilizing protein dy-
skerin (DKC1) to assemble the telomerase complex and 
maintain telomere length [52]. It has been found that 
several mutations in TERT, TERC-DKC1 (stabilizing protein 
dyskerin) and RTEL1 (regulator of telomere elongation 
helicase 1) are associated with telomere shortening in 
AA patients [53, 54].

Shortened telomere length at diagnosis in patients 
with AA has been shown to correlate with poorer outco-
mes [55–57], particularly due to an inadequate response 
to immunosuppressive therapy. Moreover, some mutations 
like TERT or TERC mutations [54, 58] are associated with 
transformation to MDS/AML [51, 55, 59, 60]. Sex hormo-
nes or other pharmacological agents have been shown to 
be effective in up-regulating telomere length and reducing 
the risk of clonal evolution to AML [61]. A frequency of up 
to 38% of clonal patterns of X-chromosome inactivation in 
female patients with AA has been observed [62].

Table IV. Selected anomalies in physical examination indicative 
of inherited aplastic anemia

Anomaly Disease or mutation

Short stature FA, DKC, DBA, SDS, 
SAMD9

Microcephaly FA, DKC

Café-au-lait skin lesions FA

Abnormal skin pigmentation,  
dystrophic nail and oral  
leucoplakia

DC

Skeletal anomalies SDS

Erythema nodosum, warts  
and molluscum GATA2

Absent radii TARS

Abnormal thumbs FA, DBA

Hypertelorism, epicanthal folds DBA

Cerebellar ataxia SAMD9L
FA — Fanconi anemia; DBA — Diamond Blackfan anemia; SDS — Shwachman-Diamond syndrome; 
DC — dyskeratosis congenita; TARS — thrombocytopenia-absentradii syndrome
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Cytogenetic abnormalities

The most common cytogenetic abnormality is monosomy 
7 (–7), occurring in up to 13% of AA cases. Overall, this 
is associated with a poorer prognosis and a high risk 
of progression to MDS or AML [63, 64]. Evaluation of 
the karyotypes in patients with MDS secondary to AA 
revealed the presence of chromosomes 6, 7 and 8 ab-
normalities [64] which suggests that these cytogenetic 
abnormalities, at the initial diagnosis or developed later 
in patients with AA, can promote progression to MDS/ 
/AML. Some cytogenetic abnormalities such as trisomy 
8 or del(13q) are associated with a favorable response 
to immunosuppressive therapy [65–67]. Although they 
are commonly found in other myeloid malignancies, they 
are related to a low risk of transformation to MDS or 
AML [57, 63, 68]. There are many cytogenetic abnorma-
lities whose clinical impact on outcomes remains to be  
established [69].

Circulating exosomal  
microRNAs

MicroRNAs (miRNAs) can regulate T cell differentiation and 
plasticity by targeting their corresponding message RNAs 
(mRNAs), which play important roles in many autoimmune 
diseases and also AA [70–73].

Among several specific miRNAs which regulate RNA 
silencing and post-transcriptional regulation of gene ex-
pression to have been studied in AA and MDS, Guidice et 
al. [74] identified 25 exosomal microRNAs uniquely or fre-
quently present in AA and/or MDS. One of these, mir-126- 
-5p, with its higher expression at diagnosis in patients with 
AA, was associated with a shorter progression-free survi-
val and a poorer response to therapy. In another study by 
Hosokawa, two miRNAs were identified: miR-150-5p which 
regulated the induction of T-cell differentiation, and miR- 
-146b-5p which was involved in innate immune response. 
Both of these increased in AA patients, whereas miR-1 was 
decreased in AA [75]. Moreover, the elevated expression 
of miR-150-5p was significantly reduced after successful 
immunosuppressive therapy but did not change in non-re-
sponders, indicating the clinical utility of miR-150-5p for 
disease monitoring [75].

Management of patients  
with aplastic anemia

Prior to initiating treatment for AA, other causes of pan-
cytopenia should be excluded, particularly inherited bone 
marrow failure syndrome (IBMFS), hypoplastic MDS and 
some others transient causes of pancytopenia including 
drugs or infections. As AA may be associated with PNH, 
detection of the PNH clone is more indicative for AA than 

any other cause of pancytopenia and bone marrow failure. 
Although allogeneic hematopoietic stem cell transplan-
tation (allo-HSCT) is considered to be the only curative 
procedure for patients with severe aplastic anemia (SAA), 
it is recommended that younger patients, particularly 
children, undergo careful evaluation of concomitant ill-
nesses and performance status to determine unfit or frail 
patients before intensive therapies, including allo-HSCT or 
immunosuppressive therapy (IST) [antithymocyte globulin 
(ATG) or cyclosporine A (CsA)], due to treatment-related 
mortality and morbidity [76–78]. Figure 1 shows a pra-
ctical therapeutic algorithm in SAA [European Group for 
Blood and Marrow Transplantation (EBMT) algorithm for 
SAA in 2019, modified] [5]. In cases of the detection of clo-
nal hematopoiesis, especially monosomy 7 (–7) or other 
abnormalities related to high-risk MDS or insufficient 
response to IST in patients with SAA below the age of 60, 
if these patients are assessed as eligible for transplant 
but have no identical sibling donor, an alternative donor 
should be sought.

Clonal hematopoiesis  
and supportive therapy

All patients with AA require ongoing supportive care to 
alleviate symptoms and reduce the adverse effects re-
lated to pancytopenia. Most studies have reported that 
infections were the predominant cause of death; therefore 
recommendations for infection prevention are included 
in several guidelines, independent of the intensity of AA 
treatment, both for transplant- or IST-eligible patients and 
for less fit patients on ongoing supportive care [6, 76,  
79–81].

Granulocyte colony-stimulating factor

Hematopoietic growth factor, granulocyte colony-stimu-
lating factor (G-CSF) stimulates granulocyte progenitors 
as well as stem cells for proliferation and differentiation. 
A randomized prospective trial on patients with newly diag-
nosed severe AA (n =192), receiving ATG and cyclosporine, 
with and without G-CSF, did not demonstrate any impact 
of G-CSF on the outcome of severe AA, independent of 
cytogenetic abnormalities. Overall survival and progression-
-free survival was comparable in both groups, as well as 
the risk of clonal abnormalities and myeloid neoplasm 
development [82]. Moreover, the results of a metanalysis 
of four studies confirm that the usage of G-CSF in IST is 
not associated with a higher occurrence of clonal evolution 
into malignant neoplasm and PNH in SAA patients [83]. On 
the other hand, a rapid granulocyte recovery in patients 
treated with IST with G-CSF addiction may identify early 
non-responders, and perhaps indicate the need for urgent 
transplantation [84, 85].
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Eltrombopag

Eltrombopag (EPAG), an oral thrombopoietin (TPO) recep-
tor agonist used in immune thrombocytopenia treatment, 
is a new therapeutic option in transplant-ineligible SAA 
patients. The role of TPO in hematopoiesis is not limited 
only to thrombopoiesis: a TPO receptor c-Mpl is present on 
hematopoietic stem and progenitor cells (HSPCs), and its 
lack in murine models leads to HSPC deficiency [86]. EPAG 
is efficient at SAA refractory to IST and in some patients it 
restores trilineage hematopoiesis with a sustained respon-
se even after discontinuation of the treatment [87–89]. Ne-
vertheless, a risk of clonal evolution during this treatment 
remains an area of concern. Two prospective studies of 
EPAG usage in treatment naïve and second in refractory/re-
lapsed SAA have not shown a higher risk of clonal evolution 
or myeloid neoplasm development compared to historical 
data [87, 88]. On the other hand, in phase 1/2 EPAG in 
R/R SAA (18%) have developed new cytogenetic abnorma-
lities, most of these (87%) within six months of beginning 
treatment. However, some were unstable and disappeared 
after EPAG withdrawal. Chromosome 7 abnormalities were 
observed in 8% (7/83) of patients, and four of them had 
persistent aberration in control cytogenetic testing one 
month after drug discontinuation. Nevertheless, none of 
them progressed to MDS/AML [88].

The impact of EPAG on the overall risk of cytogenetic 
progression, clonal evolution, and/or clinical progression 
to MDS/AML in patients with SAA requires further inve-
stigation. Due to an insufficient response to IST, patients 
who are platelet transfusion-dependent may receive EPAG 

as secondary SAA therapy, but its high costs limit the wi-
despread application of this treatment option in many co-
untries [79, 90].

Survival after hematopoietic stem cell 
transplantation

A recent study demonstrated that in some situations, de-
spite the identification of certain genetic abnormalities of 
germline monoallelic deleterious variants in the Fanconi 
anemia gene in patients with idiopathic AA (21 variants 
in 730 patients), the abnormalities do not influence the 
outcome of hematopoietic cell transplantation [91].

Generally, although allogeneic HSCT has shown an im-
provement in survival rates, particularly for HLA-matched 
unrelated donor transplants, haploidentical transplanta-
tion has been proposed as the effective treatment for se-
vere aplastic anemia and it is increasingly being used [15]. 
The optimal choice of haploidentical donor has also been 
the subject of research [92]. Furthermore, a recent meta-
-analysis of 5,336 patients comparing front-line treatments 
for AA showed significantly longer survival among AA pa-
tients undergoing first-line allo-HSCT compared to IST. On 
the other hand, one of the most important complications 
after allo-HSCT is graft-versus-host disease, and this needs 
to be carefully balanced against the concerns of IST [93].

It has to be emphasized that the choice of initial tre-
atment for patients with newly diagnosed AA still requires 
a comprehensive evaluation of donor availability, patient 
age, expected quality of life, and the risk of disease relap-
se or clonal evolution after IST [94].

Figure 1. Therapeutic algorithm in severe aplastic anemia; HLA — human leukocyte antigen; allo-SCT — allogeneic stem cell transplantation; 
IST — mmunosuppressive therapy; MUD — matched unrelated donor
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Conclusions

There are difficulties in differentiating between AA and 
MDS due to the high prevalence of clonal hematopoiesis 
in AA with genetic abnormalities overlapping with MDS. 
Furthermore, a better understanding of the pathogenesis 
of AA with respect to somatic mutations, cytogenetic ab-
normalities and defective telomerase functions, and their 
impacts on the response to IST, along with a balancing of 
the risk of clonal progression to MDS/AML, may in future 
allow for treatment personalization with precise indications 
for upfront allo-HSCT.
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