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Abstract
Peripheral T-cell lymphomas (PTCLs) are rare neoplasms that recently have been the subject of much research into 
their complex pathophysiology. PTCLs are a heterogeneous group of tumors consisting of nodal and extranodal leuke-
mic and cutaneous neoplasms. PTCLs are associated with complex biology and arduous pathology which is currently 
being studied. According to this research, the pathophysiology of PTCLs can be divided into intrinsic and extrinsic 
mechanisms. Among the intrinsic mechanisms, scientists have described JAK-STAT pathway deregulation, as well as 
different somatic mutations including RB1, PTEN, TP53 and structural changes to the receptors. Also, there are scien-
tific papers that correlate Epstein-Bárr virus or human T-cell lymphotropic virus type 1 infections with the occurrence 
of the neoplasm. PTCLs are most likely to develop in Asian and African populations. Due to poor clinical outcomes, 
PTCL treatment is the subject of intense clinical research. As a result of that, new drugs have been approved by the 
Food and Drug Administration for use among patients with refractory PTCL: pralatrexate, an antifolate drug; romidep-
sin, belinostat, an inhibitor for histone deacetylase, and brentuximab vedotin, a CD30 antibody. Also, clinical trials 
with mogamulizumab are being carried out for PTCL treatment. In addition to this, lenalidomide, as a substance that 
regulates the immune system and has shown antineoplastic effect in several hematological studies, could possibly 
be considered as treatment.
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Introduction

Peripheral T-cell lymphomas (PTCLs) are rare neoplasms 
that develop from mature-stage T-cells and natural killer 
cells (NK), presenting diverse clinical symptoms. A subtype 
of non-Hodgkin lymphoma, the heterogeneous group of 
PTCLs accounts for c.10–15% of tumors. The World Health 
Organization (WHO) categorizes PTCL into four, depending 
on localization: nodal, extranodal, leukemic, and cutaneo-
us neoplasms. There are approximately 30 subtypes of 
PTCL, where the most prevalent nodal T-cell lymphomas 
are: peripheral T cell lymphoma not otherwise specified 
(PTCL-NOS) [1]; nodal T cell lymphoma with T follicular hel-
per (TFH) phenotype which includes angioimmunoblastic  

T cell lymphoma (AITL); and systemic anaplastic large cell 
lymphoma (sALCL).

PTCLs are associated with complex biology and ardu-
ous pathology which is being studied. Among the causes 
of tumor pathogenesis are the abovementioned deregu-
lation of the signaling pathways controlling T-cell develop-
ment, differentiation and maturation; remodeling of the 
peritumor environment, and virus-mediated rewiring of T- 
-cell biology [2]. Some studies have related Epstein-Bárr 
virus (EBV) or (HTLV-1, human T-cell lymphotropic virus 
type 1) infections with the occurrence of the neoplasm 
[3–5]. PTCLs are more likely to develop in Asian and Af-
rican populations, and most frequently in people aged 
60 and above, although a few cases of PTCL in childhood 
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have been reported. They appear more often among males 
than females.

Pathogenesis

Many PTCLs remain unclassified and are known as pe-
ripheral T cell lymphoma not otherwise specified (PTCL-
-NOS). Even so, two subpopulations have been identified. 
One displays high expression of the GATA3 [6] transcrip-
tion factor (described as master regulator for T-helper-2 
cells). The other group features TBX21 exposition (master 
regulator for T-helper-1 cells and cytokine T cells) together 
with EOMES [7], and this results in a better prognosis 
of the clinical process. All of the above supports the as-
sumption that these two subpopulations present unique 
cells of origin. Considering the very complex molecular 
genesis of PTCL, researchers have distinguished between 
intrinsic and extrinsic mechanisms that control T-cell 
transformation.

Intrinsic mechanisms
The first described intrinsic molecular event is JAK-STAT 
deregulation (performing a crucial role in cytokine signal-
ing) that activates mutation which results in enhancing cell 
growth and main resistance to targeted therapy [8, 9]. Acti-
vation of the STAT precedes a unique transcriptional pattern 
which is characterized by the expression of genes that are 
responsible for growing, immune response, angiogenesis, 
and many metabolic pathways [10]. Moreover, alterna-
tions of the structure and somatic mutations are reported 
among intrinsic mechanisms. Studies have shown that loss 
of PRDM1, CDKN2A, CDKN2B, RB1, PTEN, TP53 genes 
is observed in the GATA1-PTCL-NOS group of neoplasms, 
whereas mutations occurring in VAV1, ITK, SYK are pres-
ent in PTCL-NOS and TFH-PTCL [11]. The next observable 
molecular mechanism that leads to the permanent activa-
tion or dysregulation of respective signaling pathways in 
PTCL are uncontrolled T-cell receptor (TCR) signaling trend 
[12, 13]. The loss of negative regulators of TCR, structural 
diversions as well as somatic mutations, constitute activa-
tion of the TCR signaling pathway leading to progression of 
the neoplasms [14]. Metabolic changes contributing to the 
expression of the PTCL-NOS often refer to the overexpres-
sion of the proteins linked to the lipid metabolism [15]. In 
addition to this, dysregulation of the choline metabolism 
has also been described in the pathophysiology of PTCLs, 
maintaining AKT and ERK phosphorylation, RAS activity 
and MYC oncoprotein expression [16]. Also, the phosp-
hoinositide 3-kinase (PI3K) (maintaining the metabolism 
of glucose, glutamine, lipids and nucleotides) pathway 
deregulation affects the phenotype and the metabolism 
of T-cells neoplasms [17, 18]. Studies show that levels of 
AKT phosphorylation can correlate with an inferior outcome 
of PTCL [19] (Table I).

Extrinsic mechanisms
Taking into account the extrinsic mechanisms, the tumor 
cells in PTCLs are remarkably dependent on the envi-
ronment. As already mentioned, the activation of TCR 
combined with the cytokine signals are essential factors 
in PTCL occurrence [20]. Protumorigenic pathways, com-
bined with decreased immunogenicity of the host, are 
major agents responsible for the successful growth and 
survival of neoplastic cells. Furthermore, mutations in T- 
and NK-cells diverge the microenvironment of cells and 
are responsible for the systemic symptoms that frequently 

Table I. Intrinsic and extrinsic mechanisms of PTCL pathogenesis

Intrinsic mechanism Extrinsic mechanism

JAK-STAT deregulation

Enhanced cell growth 
and resistance to targe-
ted therapy

Decreased immunogenicity  
of host

Immunosuppression by Treg 
cells

Loss of PRDM1*, CD-
KN2A#, CDKN2B#, RB1&, 
PTEN#, TP53‡

Dysfunction of immune 
response, angiogene-
sis and enhanced cell 
growth

Mutations in T- and NK-cells

Uncontrolled TCR‡‡ signa-
ling trend

Permanent activation 
and dysregulation of sig-
naling pathways

EBV infection

Lipid metabolism

Overexpression of prote-
ins linking to expression 
of PTCL-NOS

HTLV-1 infection

Choline metabolism

AKT/ERK phosphoryla-
tion, RAS activity, MYC 
oncoprotein expression

Environment

More neoplasms in Asia

PI3K⁑ deregulation

Glucose, glutamine, 
lipids and nucleotides 
metabolism

Production of VEGF

Level of VEGF correlates with 
progression of lymphoma

*Denotes protein BLIMP-1 that is crucial for most terminal effector cell differentiation in CD4 
and CD8 T cells; #CDKN2A and PTEN deletions have emerged as most frequent aberration as-
sociated with poor outcomes in patients with peripheral T-cell lymphoma not otherwise specified 
(PTCL-NOS). PTEN acts as tumor suppressor gene through action of its phosphatase protein 
product; &RB1 retinoblastoma protein 1, a tumor suppressor protein; ‡together with damage to 
TP53 gene, tumor suppression is severely compromised; ‡‡TCR is a protein complex found on 
surface of T cells, or T lymphocytes, that is responsible for recognizing fragments of antigen 
as peptides bound to major histocompatibility complex (MHC); it is responsible for developing 
uncontrolled signaling pathways; ⁑PI3K as a phosphoinositide; 3-kinases are involved in cellular 
functions such as cell growth, proliferation, differentiation, motility, survival and intracellular 
trafficking, which in turn are involved in cancer; TCR — T-cell receptor; EBV — Epstein-Bárr virus; 
HTLV-1 — human T-cell lymphotropic virus type 1; PI3K — phosphoinositide 3-kinase; VEGF — 
vascular endothelial growth factor
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occur with PTCLs. Immunosuppression by Treg cells as well 
as different models of immunoevasion in PTCL have also 
been noted. Among PTCL-NOS, there is loss of MHC class 
I proteins and CIITA, that is responsible for the MHC class 
II transactivator and TP53 with CDKN2A alternations [21, 
22]. Moreover, both tumor and endothelial cells can pro-
duce vascular endothelial growth factor (VEGF), the levels 
of which can correspond to the progression of lymphoma 
[23]. Moreover, PD1+ PTCL cells inhibit the immune re-
sponse throughout the transmembrane protein, resulting 
in downmodulation on CD8+ T-cells [24]. Additionally, high 
levels of flice-like inhibitory protein (flip) can develop PTCL 
evasion [25].

 As for the overexpression of CD47, this can inhibit an-
titumor macrophage activity and recently has been used in 
a targeted therapy using CD47 antibodies or CD47 receptor 
molecules [26]. As a prevention of the expansion of PTCL, 
a mechanism of host-suppression is being looked into as 
possible therapy maintenance. In accordance with the stu-
dies, PDL1 is highly expressed in ENKTCL176, ALK+ ALCL 
and among the subpopulation of PTCLs [27, 28]. Soluble 
factor (PDL1) plays a role as a main biomarker rather than 
predicting the clinical outcomes among patients with PTCL. 
There are reports regarding EBV correlation with PTCL oc-
currence: recent data shows that EBV may affect precursor 
lymphoid cells that can develop into T, B or NK cells. Re-
cently, EBV-associated lymphoproliferative diseases have 
been described, in a broad range from highly aggressive 
PTCL to chronic active EBV infection without any presen-
ce of neoplasms.

There is a higher incidence of PTCL lymphomas in Asia, 
supposedly due to the clonal expansion of premalignant 
EBV-infected normal T-cells and NK cells. Therefore, insu-
fficiency of the immune system to eliminate the EBV infec-
tions plays a crucial role in the development of these neo-
plasms. Another viral factor associated mainly with ATLL 
is HTLV-1, at which the risk of developing lymphoma is low 
(7% in males and 2% in females) [29]. Many reports show 
that HTLV-1 is clonally integrated with tumor cell genetic 
content [30].

Treatment
For most subtypes of PTCLs, initial treatment is a combi-
nation of a chemotherapy regimen based on either CHOP 
(cyclophosphamide, doxorubicin, vincristine, and predniso-
ne), or CHOEP (etoposide, vincristine, doxorubicin, cyclop-
hosphamide, and prednisone), or another multidrug plan 
[31]. Considering the high risk of PTCL relapse, researchers 
recommend the implementation of high-dose chemothe-
rapy followed by autologous stem cell transplantation. 
The Food and Drug Administration (FDA) has approved 
four substances for use in patients with refractory PTCL: 
pralatrexate, an antifolate drug; romidepsin, belinostat, an 
inhibitor for histone deacetylase (HDAC), and brentuximab 
vedotin, a CD30 antibody (Table II). For CD30-expressing 
PTCLs, brentuximab vedotin (BV), an antibody that can 
combine cytotoxic monomethylauristatin E (MMAE), a po-
tent microtubule-disrupting substance, into anti-CD30+ 
lymphoma cells, is now approved for use in combination 
with cyclophosphamide, doxorubicin, and prednisone as 
an initial treatment [32, 33].

Considering the complex biology, the diversity in de-
scribing CD30 expression, and the differing mechanisms 
of management, the level of CD30 antibodies expression is 
not a predictive factor of the response to BV [34]. A study 
found that single-agent BV given at 1.8 mg/kg intraveno-
usly every three weeks for up to 16 cycles in 58 patients 
with relapsed or refractory (R/R) sALCL showed an overall 
response rate (ORR) of 86%, with a 57% complete respon-
se (CR) in a pivotal phase II study leading to approval in 
the USA, EU, and Japan for R/R sALCL. Responses in sALCL  
appear to be durable: 5-year overall survival (OS) and pro-
gression-free survival (PFS) were 79% and 57%, respec-
tively, in patients who achieved a CR. In patients who did 
not achieve CR, 5-year OS was 25% [35].

Moreover, for many PTCLs, the JAK-STAT pathway is de-
scribed as a potential target for the new therapies. Studies 
are currently testing monotherapy using the JAK inhibitor 
ruxolitinib in treatment-naive as well as relapsed PTCL [36]. 
Following the pathogenesis of SYK signaling trend, cerdu-
latinib, described as a dual SYK-JAK inhibitor, has shown 

Table II. New medical agents in treatment of peripheral T-cell lymphoma

Substance Receptor Dosage Survival

Brentuximab vedotin CD30 1.8 mg/kg every 21 days PFS 16.7 months

Ruxolitinib JAK1, JAK2 20 mg (orally) twice daily Not reported

Lenalidomide Cereblon Lenalidomide (25 mg per day for 14 days every 21 days) 
+CHOP (standard, every 21 days)

PFS 2 yrs 42%

Mogamulizumab CCR4 Once a week for eight weeks by intravenous infusion  
at 1.0 mg/kg

PFS 3 months

Pembrolizumab PD1, PD-L1 200 mg fixed dose every three weeks in combination with 
romidepsin

Overall response rate 44%

PFS — progression-free survival; CHOP — cyclophosphamide, doxorubicin, vincristine, and prednisone
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significant efficacy in a phase IIa clinical trial (43% of re-
fractory PTCL with a partial or complete response, and 50% 
responses in patients with AITL) [37]. Among different im-
munotherapies, lenalidomide as an immunoregulator has 
shown antineoplastic effect in several hematological stu-
dies [38]. Maintaining binding to cereblon, suppressing the 
cell cycle by the degradation of cyclin-dependent kinases, 
lenalidomide presents an antiproliferative activity [39]. It 
also has immunomodulatory effects based on the increa-
sed levels of IL-2 present among T-cell and NK-cell activity. 
Lenalidomide has been studied as a single agent in recur-
rent PTCL, showing a response rate of 33%, and currently 
is being studied in combination with CHOP as first-line tre-
atment among patients with AITL [40].

The next immunotherapy drug, mogamulizumab, a mo-
noclonal antibody CCR4 that stimulates antibody-depen-
dent cellular cytotoxicity has shown potential antitumor 
effect against PTCL cell lines and ATLL mouse models in 
research trials [41]. Mogamulizumab was approved by 
the Japan FDA in 2012 for the treatment of ATLL, based 
on a multicenter phase II study conducted in 28 relapsed 
patients. In 2018, it was approved for the treatment of re-
current mycosis fungoides and Sézary syndrome (~40% 
positive for CCR4) [42].

Studies show that many PTCLs constitutively express 
PD1 or PDL1, the blockage of which has been shown to 
be therapeutic in a variety of host intratumoral cells in 
non-Hodgkin and Hodgkin lymphoma. Pembrolizumab is 
described as efficient in relapsed NK-cell/T-cell lympho-
mas and also shows moderate activity in PTCL [43]. Mo-
reover, rapid progression after a single infusion of nivo-
lumab, a PD1 humanized antibody, was observed among 
patients with ATLL. The gene expression profile of tumor-
-associated Treg cells and ATLL cells after PD1 blockade 
was remarkably similar, suggesting a suppressive role of 
PD1 in indolent ATLL [44]. This is combined with the fin-
dings that PD1 suppresses oncogenic T cell signaling in 
a mouse model via PTEN and attenuates signaling by AKT 
and protein kinase C (PKC) in premalignant cells [45]. 
Additionally, the role of CAR (chimeric antigen receptor) 
T cell therapy is limited to those patients with relapsed 
PTCL. Research shows that CD30+ CAR-T cells present 
some effects in mouse models, but the reactivity against 
alloreactive T cells or Treg cells that express very high le-
vels of CD30 remains unknown. CD30 CAR-T cells clinical 
trials have demonstrated either a stable disease or partial 
response [46]. Only one patient with ALCL in any of these 
clinical trials presented a complete remission that lasted 
nine months. Recently, CD4 CAR-T cells have shown cyto-
toxic efficacy both in PTCL cell lines and in mouse models, 
with some degree of antineoplastic effect and on-target/ 
/off-tumor effect leading to CD4+ T cell lymphopenia. Also, 
expressions of CD37 and CCR4 were recently shown to be 
targets for CAR-T cell therapy [47].

PTCL as a rare, very heterogeneous group of neoplasms, 
show advanced mechanisms of molecular biology, as well as 
distinct subgroups with defined clinical outcomes and respon-
ses to therapies. Improvements will be needed to achieve ear-
ly detection and to anticipate recurrences. With the creation 
of research networks, the future will feature genomic studies 
as well as clinical trials testing new agents that could be used 
to tackle this rare neoplasm. Collecting more data should 
broaden the understanding of the molecular mechanisms 
that may lead to new rationally-based strategies of treatment.

The recent FDA approval of novel agents and their pro-
mising results, together with new drugs and immune-ba-
sed therapies, are expected to improve clinical outcomes, 
although therapies using multiple targets might also be 
necessary to maintain therapeutic success.
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