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Abstract
The revolutionary finding of cell free DNA (cfDNA) circulating in the bloodstream had a huge impact on the development 
of non-invasive prenatal testing (NIPT) (obstetrics) and liquid biopsies (oncology). The latter, combined with the sequenc-
ing of tumor DNA-containing cfDNA, have been widely applied in cancer research, demonstrating the potential of these 
techniques to improve prognostication and guide individualized treatment strategies. During routine NIPT analysis of 
more than 88,000 pregnant women performed in our institution, 14 abnormal genomic profiles suggestive of maternal 
tumor have been identified. Interestingly, one patient was further diagnosed with classic Hodgkin lymphoma (cHL), 
a tumor characterized by a low content (<2%) of neoplastic cells in tumor mass. To examine whether circulating cfDNA 
can be informative about genomic imbalances in neoplastic Hodgkin/Reed-Sternberg (HRS) cells, we performed a pilot 
study of nine prospective cHL cases. This study showed that genomic profiles of cfDNA correspond to the profiles of 
HRS cells. To get further insights into the genome of cHL, a large study on cfDNA from 177 prospective cHL patients 
was subsequently established. Based on ultra-low pass sequencing of cfDNA from this cohort, we built a comprehensive 
catalog of genomic abnormalities, as well as their frequencies and patterns. Besides the known recurrent imbalances, 
such as gain/amplification of 2p16/REL-BCL11A and 9p24/JAK2-CD274-PDCDLG2, novel recurrent abnormalities were 
identified in cHL. Altogether, we have provided evidence that cHL is characterized by consistent and recurrent genomic 
imbalances and we have shown the potential of genomic profiling of cfDNA as a novel and non-invasive tool in the 
diagnosis and follow up of cHL patients.
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Introduction

Cancer is a genetic disorder driven by accumulating genetic 
abnormalities, including oncogenic DNA mutations and 
chromosomal defects in somatic cells [1]. Acquired aber-
rations result in deregulated expression of involved genes 
(oncogenes and tumor suppressor genes) and consequen-
tly lead to malignant transformation of affected cells. To 
date, more than 500 driver genes, activated or inactivated 
by genetic and epigenetic aberrations, are known to be 
involved in carcinogenesis.

The major source of neoplastic material used for cancer 
research have been traditional biopsies taken for diagnos-
tic purposes. Sampling tumor tissue, however, is invasive, 
associated with procedural risks, sampling errors and the 
potential inability to capture special heterogeneity in the 
setting of multifocal disease. Over the last two decades, 
another fraction of tumor DNA known as circulating cell- 
-free tumor DNA, has attracted attention of the scientific 
community. Circulating cell-free DNA (ccfDNA), first report-
ed by Mandel and Metais in 1948 [2], comprises genome 
fragments that float freely through the bloodstream. This 
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fraction of DNA became particularly interesting when it was 
discovered that fetal DNA, mainly originating from placental 
trophoblast cells, can cross the placenta and be identified 
in the plasma of pregnant women [3]. This revolutionary 
finding launched the era of non-invasive prenatal testing 
(NIPT), a screening of fetal genome in maternal ccfDNA 
using next generation sequencing [4, 5]. Interestingly, it 
appears that tumors also shed DNA to the circulation and 
that ccfDNA of patients with cancer contains circulating tu-
mor DNA (ctDNA) which can serve as a ‘liquid biopsy’ [6].

The liquid biopsy’ terms a minimally invasive technique 
of extraction of tumor-derived material (circulating tumor 
cells, as well as DNA, RNA, microRNA and proteins) from 
non-solid biological tissue like blood, saliva and urine, for 
further genomics and proteomics analysis in patients with 
cancer. Circulating cfDNA fragments are stable in circula-
tion, but their half-life is relatively short. DNA is shed pri-
marily through apoptosis and necrosis, but also through 
secretion. ccfDNA in the blood of healthy individuals is 
present at low levels, but is increased in oncological pa-
tients, being shed from both normal and malignant cells.

Given that ctDNA harbours cancer-specific modifica-
tions, including point mutations and chromosomal copy 
number abnormalities (CNA) (gains and losses), and sam-
pling can be easily done at each stage of disease, inter-
est of non-invasive diagnostic of tumors has grown enor-
mously [7–12].

Detection of incipient tumors in pregnant 
women by screening of plasma cell-free DNA

NIPT has been recently widely applied in routine practice. 
Since then, occasional reports of discordant NIPT results 
indicating for detection of tumor-derived CNAs in plasma 
cfDNA of pregnant women have been published [13, 14]. In 
University Hospital Leuven, Belgium, NIPT was introduced in 
2013. Over 6.5 years, more than 88,000 pregnant women 
underwent NIPTing. Application of the Genome-wide Imba-
lance Profile sequencing pipeline (GIPSeq) developed in our 
institution allows unbiased detection of CNA in cfDNA [5].

Upon analysis of the 88,294 NIPT results, 14 women 
without a previous medical history of cancer were identi-
fied with a GIPSeq result suggesting an occult maternal 
malignancy [15, 16]. The patients underwent further clin-
ical investigations, including whole-body diffusion-weight-
ed magnetic resonance imaging (WB-DWI MRI), which led 
to identification of maternal tumors in 12 pregnant wom-
en. In one case, the cancer diagnosis (primary mediasti-
nal large B-cell lymphoma) was made three years after 
the detection of an aberrant result by NIPT/genome-wide 
imbalance profile sequencing (GIPSeq). More than 66% of 
tumors were of hematological origin, mainly Hodgkin (75%) 
and non-Hodgkin lymphomas (25%). One-third (33.3%) of 
cancers were solid tumors (ovarian and breast carcinoma, 

high grade osteosarcoma). In several cases with confirmed 
cancer diagnoses, further genetic analyses, using array 
comparative genomic hybridization (aCGH), fluorescence 
in situ hybridization (FISH), or low-pass whole genome se-
quencing (0.1×) of biopsy DNA, evidenced that the ccfDNA- 
-detected CNAs represent genomic modifications of tumor 
DNA. In two patients with an aberrant GIPSeq profile and 
lack of suggestive malignancy, clinical follow-up was ad-
vised. Although the detected maternal malignancies were 
occult, it is possible that the symptoms of cancer (such as 
fatigue, nausea, abdominal discomfort, and vaginal blood 
loss) easily could have been misinterpreted as physiologi-
cal gestational symptoms.

Genome-wide studies of classic Hodgkin 
lymphoma (cHL) using plasma cfDNA

Initial discovery and pilot study of cHL
The identification of genomic abnormalities in plasma cfDNA  
of a pregnant woman further diagnosed with early-stage 
cHL (Ann Arbor stage IIA) [15] was unexpected, because 
cHL is hallmarked by a minority of neoplastic cells (0.1–2%) 
amidst an overwhelming majority of non-malignant immune 
cells [17]. For this reason, detection of HRS cell-derived 
DNA in plasma was intriguing. The rarity of neoplastic cells 
in cHL tumor mass complicates the analysis of somatic 
genetic alterations in this malignancy and hampers the 
elucidation of its pathogenesis, biology and diversity [18]. 
Genetic features of HRS cells has been initially studied in 
HL-derived cell lines or sporadically in original tumor sam-
ples by FISH [19–21]. More recently, challenging attempts 
were undertaken to investigate genomics of cHL using HRS 
cells isolated by laser microdissection or cell sorting after 
whole genome DNA amplification [22–28]. The discovery 
that HRS-derived DNA is present in a patient’s plasma 
opened a new avenue to remotely sample the HRS genome 
in a minimally invasive way and to impact HL research.

To validate our initial observation of HRS cells-relat-
ed chromosomal imbalances in patient’s ccfDNA [15], we 
undertook a pilot study of nine prospective cases of biop-
sy-proven nodular sclerosis Hodgkin lymphoma, which is 
the most frequent subtype of cHL [29]. Eight cases were 
recruited at time of diagnosis and one at first relapse. The 
patients presented at stage IIA (7/9) and IVB (2/9) dis-
ease. The collected ccfDNA was subjected to low-cover-
age massive parallel sequencing. The downstream analy-
sis detected genomic gains and losses in eight cases. The 
most frequent gains, found in ≥5 cases, affected 2p (n =7), 
3q, 5q and 9p (n =5), while recurrent losses detected in 
4–5 patients involved 1p, 6q, 7q, 9q, 10q, 11q, 13q and 
22q. Some of these imbalances were extensively validated 
by FISH with probes representing affected chromosomal 
regions on HRS cells from either cytogenetic harvests or 
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biopsy samples. All patients, including the pregnant woman, 
underwent chemotherapy with or without the involvement 
of node radiotherapy. All responded, as shown by early clin-
ical evaluation. Importantly, GIPSEq analysis performed in 
subsequent samples taken between days 15 and 43 after 
treatment initiation, showed normal genomic profiles in all 
cases, confirming clinical observation of complete meta-
bolic remission. To gain insights into mechanisms under-
lying an abundant release of ccfDNA by scarce HRS cells, 
we analyzed the expression of cell cycle indicator Ki67 and 
cleaved caspase 3 by immunohistochemistry (IHC) in all 
nine cases. Coexpression of both molecules in HRS cells 
and the presence of necrosis in biopsy samples suggest 
a high turnover of neoplastic HRS cells in cHL. The find-
ing of most complex genomic profiles in both patients with 
advanced disease (stage IVB) suggests an association be-
tween the HRS cell burden and the level of HRS cell derived 
DNA in ccfDNA. These pilot data indicates for potential of 
ccfDNA profiling as a novel non-invasive tool for diagnosis 
and monitoring of the disease.

Landscape of copy number variations in cHL
After the technical proof-of-principle study proving that 
circulating cfDNA from HL patients contains circulating 
tumor DNA (ctDNA) from HRS cells, and that the DNA 
can be profiled by massive parallel sequencing [29], we 
established a large collaborative project of KU Leuven 
and the Lymphoma Study group (LYSA) of cHL on cell-free 
DNA [30]. The project aimed at screening of genomic im-
balances in HRS cells using ultra-low pass sequencing of 
cfDNA in a large series of cHL patients. Between 2014 and 
2018, we prospectively collected plasma cfDNA from 177 
new cHL patients (mostly early stage). To profile genomic 
imbalances, cfDNA samples were sequenced at low cove-
rage (0.26×) and subjected to downstream bioinformatic 
analysis. In addition, we attempted to estimate the clonal 
fraction of cfDNA (presumably derived from HRS cells) and 
analyze a possible correlation of ctDNA with the known 
prognostic risk factors and tumor burden, and monitor the 
CNA evolution after treatment initiation.

The subsequent genome-wide analysis of cfDNA from 
this cohort allows the construction of a comprehensive cat-
alog of the types of CNA, their frequencies and patterns in 
cHL. More than 90% of patients (164/177) exhibited CNA in 
cfDNA. The remaining cases displayed balanced CN profiles 
at diagnosis, likely due to a low content of tumor fractions, 
below the detection threshold of the applied assay. CNA 
was detectable in 94% (140/149) and 92% (22/24) of cas-
es with stage I–II disease and III–IV disease, respectively. 
Most cases (152/164) revealed complex profiles with five or 
more CNAs. The most prevalent gains affected 2p16 (69%), 
5p14 (50%), 12q13 (50%), 9p24 (50%), 5q (44%), 17q 
(43%) and2q (41%). Genomic gain or amplification usual-
ly impacts expression of harbored genes, as show in the 

case of 2p16 and 9p24 amplification targeting the known 
lymphoma-related driver genes, REL/BCL11A and JAK2/ 
/CD274/PDCDLG2, respectively. Other candidate genes 
(unmutated or mutated) deregulated by genomic gains 
in cHL include IL-10 (1q32), XPO1 (2p15), NFΚB1 (4q24), 
CASP6 (4q25), CSF1R (5q34) and STAT6 (12q13). Genomic 
losses most frequently targeted 13q (57%), 6q25q27 (55%), 
4q35 (50%), 11q23 (44%) and 8p21 (43%). The known tu-
mor suppressor genes affected by losses of 6q and 13q 
include TNFAIP3 and FOXO1, respectively. In addition, we 
identified loss of 3p13p26 and 12q21q24, and gain of 
15q2-q26 as novel recurrent CNA in cHL.

FISH was used to validate genomic gains or losses 
detected in cfDNA. Using DNA probes representing the 
gained/lost regions of interest which were applied on stored 
cytogenetic harvests from 10 biopsies, we confirmed the 
imbalances in HRS cells of 9/10 cases. Notably, most CNAs 
detected in our series have been already reported in small-
er studies on purified HRS cells or on tumor sections, but 
their occurrence and frequencies varied in different stud-
ies [19, 20, 22–25].

Our study, the largest study on CNA in cHL to date, pro-
vides a comprehensive landscape of CNAs with a reliable 
rating of their relative frequency. We found that occurrence 
of gain of 2p16, 5p14 and 12q13 and loss of 6q25 and 
13q is similar to gain/amplification of 9p24 affecting 
CD274/PD-L1 and PDCDLG2/PD-L2. The latter aberration 
is an important predictor for favorable outcome after an-
ti-PD-1 driven immune checkpoint blockade, e.g. nivolum-
ab [15, 31]. Significantly, we found loss of 3p13-p26 and 
12q21-q24 and gain of 15q21-q26 as three novel non-ran-
dom CNAs in cHL. Postulated candidate oncogenes har-
bored by chromosome 15q include several genes promot-
ing cell proliferation and acting downstream of NF-κB, 
JAK-STAT and cytokine receptor signaling (AKAP13, FES, 
STRA6 and PIAS1) and genes showing anti-apoptotic activ-
ity (MAP2K1 and MAP2K5). Candidate tumor suppressor 
genes mapped on 3p and 12q include negative regulators 
of cell proliferation (RHOA, VHL and TLR9/3p, SOCS2/12q) 
and apoptosis (TRAIP/3p, APAF1/12q). Further investiga-
tions studying whether and how these novel CNAs are im-
plicated in the pathogenesis of cHL are required.

In addition, we found that ctDNA concentration at di-
agnosis was associated with HRS cell burden and tumor 
mass volume. Notably, ctDNA and related CNA rapidly di-
minished upon treatment initiation, while persistence of 
CNA correlated with an increased probability of relapse.

Our study showed that cfDNA could be a gateway to the 
genome of HRS cells and serve as substrate for the mon-
itoring of early disease response.

Altogether, we have provided evidence that cHL is char-
acterized by consistent and recurrent genomic imbalanc-
es. The aberrations were detected by massive parallel se-
quencing of ccfDNA from 93% of patients with early and 
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advanced stages of newly diagnosed tumors. Besides the 
known recurrent gains and losses, loss of 3p13p26 and 
12q21q24 and gain of 15q21q26 were identified as novel 
recurrent CNA in cHL. Genomic aberrations were correlated 
with disease burden and evolution. The rapid normalization 
of ccfDNA profiles on therapy initiation suggests a potential 
role for ccfDNA profiling in early response monitoring. These 
findings confirmed our pilot studies, and showed the poten-
tial of genomic profiling of cfDNA as novel and non-invasive 
tool at diagnosis and follow up of cHL patients. Moreover, 
our discoveries and those by other groups show several new 
possibilities for exploring the molecular pathogenesis of 
HL, as illustrated by recent publications [32–35] and have 
potential implications for the prospective clinical develop-
ment of biomarkers and precision therapy for this tumor.
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