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Abstract
B cell-specific antigens such as CD20 and CD19 are the leading examples of clinically utilized targets for cancer im-
munotherapy. Rituximab, the anti-CD20 monoclonal antibody (mAb) approved for the treatment of B cell lymphoma in 
1997, was the earliest mAb drug ever registered in cancer immunotherapy. The clinical success of chimeric antigen 
receptor (CAR)-modified T cells has been demonstrated in patients with B cell acute lymphoblastic leukemia (B-ALL), 
and CD19-directed CAR-T cells were the first CAR therapy ever approved to treat cancer patients. While surface antigen-
targeting immunotherapies play a significant role in the therapy of B-ALL, in particular in the treatment of relapsed and 
refractory patients, they have some limitations and face continuous challenges. Herein, I review the types of antigen-
specific immunotherapies that are used in the treatment of B-ALL, including naked mAbs, antibody-drug conjugates, 
B cell-specific T cell engagers, and CAR-modified T cells. I discuss the requirements for good immunotherapy targets 
and summarize the main methods used to identify novel putative targets. I present an overview of B cell-specific and 
non-B cell-specific target antigens, both already used in clinics and tested in preclinical models. I also discuss limita-
tions of current B-ALL immunotherapy, attempts to overcome these limitations, and future directions of immunotherapy 
research.
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Introduction

Surface antigen-targeted immunotherapies were first 
introduced in the treatment of B cell malignancies. The 
availability of B cell-specific target antigens such as CD19, 
CD20 and CD22 that are not expressed in other tissues 
has greatly contributed to success. CD19 is the main target 
for chimeric antigen receptor (CAR) T cell immunotherapy 
and for blinatumomab, a bispecific T cell engager (BiTE). 
Both therapies are already approved for the treatment 
of relapsed/refractory (R/R) B cell acute lymphoblastic 
leukemia (B-ALL). Although CD19 CAR-T cells have shown 
unprecedented response rates, exceeding 80% in R/R 
B-ALL patients, the durability of response is limited, and 

many patients relapse with CD19-negative disease [1, 2]. 
Other B cell-specific antigens such as CD22 and CD20 are 
already available as second-line therapies of CD19-nega-
tive relapses and their efficacy has been tested in clinical 
trials [3, 4]. However, emerging results of these trials are 
revealing at best transient responses, hence novel target 
antigens need to be identified and verified.

B-ALL is a heterogeneous disease with dozens of ge-
netic abnormalities identified to date, and it develops in 
both children and adults. Although the survival progno-
sis is good for pediatric B-ALL (~90%), the treatment out-
come in adults is much worse (40–50% overall survival) 
[5]. Patients harboring specific genetic translocations re-
spond poorly to conventional therapy but also to modern 
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immunotherapies. The subtype with the poorest outcome 
is mixed lineage leukemia-rearranged B-ALL (MLLr B-ALL), 
which frequently escapes CD19-targeted immunotherapy 
due to lineage switch from MLLr B-ALL to MLLr acute my-
eloid leukemia (AML), with a loss of B cell phenotype-as-
sociated markers [6–9]. This precludes the use of B cell-
specific antigens as immunotherapy targets and encourag-
es the selection of novel candidates as alternative targets 
for immunotherapy.

In this review, I describe the types of antigen-specific 
immunotherapy currently used in the treatment of B-ALL. 
I define the features of appropriate immunotherapy targets, 
and list ways to identify novel targets for immunotherapy. In 
addition, I summarize the target antigens already utilized 
in R/R B-ALL therapy as well as novel, alternative targets 
tested in preclinical models. Finally, I discuss the limita-
tions and challenges of B-ALL immunotherapy.

Types of antigen-specific immunotherapy 
employed in B-ALL

Conventional B-ALL therapy is composed of intensive, multi-
agent chemotherapy delivered in several cycles of treat-
ment over 2–3 years, and is associated with numerous side 
effects and long-term consequences [5]. Naked monoclonal 
antibodies (mAbs), such as rituximab, can be added to the 
chemotherapy of a subset of adult B-ALL patients at the 
induction phase, due to their low price, broad availability 
and mild side effects. Other, more advanced, immunothera-
pies such as BiTe and CAR-T cells play an important role in 
the treatment of R/R B-ALL patients, as a bridge therapy 
to allogeneic hematopoietic stem cell transplantation (allo- 
-HSCT). Some attempts are also being made to apply CAR-T 
cells to treat relapse after allo-HSCT [10].

Currently available immunotherapy options in the treat-
ment of B-ALL are extensively described in [11]. Briefly, the 
vast majority of registered immunotherapies target surface 
antigens specific for B cells, namely CD19, CD20, CD22, 
with mAbs recognizing these antigens. Apart from naked 
mAbs that work mainly through the induction of host’s ef-
fector cell-dependent mechanisms (immunophagocytosis, 
antibody-dependent cytotoxicity), mAb derivatives such as 
antibody-drug-conjugates (ADC) or BiTE are also used in 
clinical practice [12]. Additionally, cellular therapy using 
autologous, patient-derived T cells genetically modified with 
chimeric antigen receptors (CARs) has been available since 
2017 [13]. CARs are synthetic constructs composed of sev-
eral domains: 1) an extracellular domain responsible for 
the recognition of tumor-specific targets, which is derived 
from mAb; 2) a transmembrane part; and 3) intracellular 
domains responsible for the transmission of activating sig-
nals and co-stimulation, CD3ζ, CD28, 4-1BB.

During CAR-T cell therapy, autologous T cells are col-
lected from a B-ALL patient by leukapheresis, genetically 

modified ex vivo with CARs, and infused back into the pa-
tient’s circulation, where they specifically recognize cells 
expressing target antigens, mainly leukemic cells. Impor-
tantly, the recognition of malignant cells by CAR-T cells and 
induction of the cytotoxic responses are major histocom-
patibility complex (MHC)-independent. The construction of 
CAR molecules, e.g. the choice of costimulatory domains 
as well as types of hinge and transmembrane domains, 
significantly affect CAR-T cell functionality [14].

Although antigen-targeted immunotherapy is more 
specific than conventional chemotherapy, adverse side-
effects associated with CAR-T cell and BiTE therapy have 
been frequently reported. B cell aplasia, a direct conse-
quence of on-target off-tumor toxicity, impairs antibody 
production and increases susceptibility to infection, but is 
manageable with immunoglobulin infusion. A treatment-
induced life-threatening complication is cytokine release 
syndrome (CRS), which leads to multiple organ dysfunc-
tion and neurotoxicity [15]. This can be mitigated with the 
use of corticosteroids and tocilizumab, an antibody block-
ing interleukin 6 (IL-6) receptor. Further information about 
the efficacy, challenges and ways to address obstacles to 
CAR-T cell therapy can be found in [16, 17].

Immunotherapy targets

What makes a good target  
for cancer immunotherapy?
An ideal target for cancer immunotherapy should be 
expressed exclusively on malignant cells and should be 
essential for cancer cell proliferation and survival. How-
ever, none of the targets currently in use meets these 
stringent criteria. The vast majority of antigens utilized in 
the immunotherapy of B-ALL are B cell-specific proteins 
that occur both in malignant and normal B cells, but are 
rarely present in other tissues. This usually ensures suf-
ficient efficacy and safety of the targeted immunotherapy. 
The resulting on-target off-tumor toxicity to normal B cells 
is an unavoidable but manageable side effect. However, 
B-ALL subtypes derived from early stages of B cell develop-
ment, with more stem cell-like features such as MLLr- or 
TCF3-ZNF384 fusion-B-ALL, in response to CD19-directed 
immunotherapies were shown to undergo lymphoid-to- 
-myeloid lineage switch [7, 8, 18]. This resulted in the loss 
of B cell phenotype and precluded further immunotherapy 
targeting, not only CD19 but also other B cell-specific  
antigens.

Stability, sustainability, and abundance of a target an-
tigen in all leukemic clones are other important features. 
Indeed, the outcome of immunotherapy usually corre-
lates with high antigen density on malignant cells [1, 19]. 
Another important issue is the lack of expression of the 
target antigen on activated T cells. This is particularly im-
portant for CAR-T cell immunotherapy targets. Fratricide 
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elimination of CAR-T cells expressing the corresponding 
antigens has been observed in the case of CD38 [20], and 
is a major obstacle to CAR-T cell manufacturing and their 
subsequent efficacy.

The usefulness of a surface protein as an immuno-
therapy target also depends on the type of immunotherapy 
in which it is employed. Comparisons of the intracellular 
transport and efficacy of CD22- and CD19-targeted immu-
notoxins revealed that CD22 is much more efficiently in-
ternalized and hence may serve as a better target for ADC 
[21, 22]. In contrast, antigens that internalize slowly, such 
as CD20, are better targets for naked antibodies due to 
prolonged exposure of the Ab crystallizable fragment (Fc) 
and therefore efficient activation of Fc-dependent effector 
mechanisms [23].

Methods of target identification
To date, combined transcriptomic and proteomic ap-
proaches have been successfully used to select candidates 
for novel immunotherapy targets in various cancer models 
including B-ALL [24–26]. Identifying protein-coding mRNAs 
that are specifically expressed in cancer cells is feasible 
by comparing malignant primary cells and cancer cell 
lines to normal counterparts. However, as the correlation 
between mRNA and protein expression on the cell surface 
is moderate, transcriptomic data must be integrated with 
cell surface proteomics. Quantitative mass spectrometry 
has been successfully employed to generate human cell 
surface proteome [24, 26]. The integrated proteomic and 
transcriptomic approach has been recently used to identify 
CD72 as an optimal target in MLLr B-ALL by comparing cell 
surface proteins in cell lines representing MLLr to other 
subtypes of B-ALL [25].

B cell-specific targets  
used in B-ALL immunotherapy

B-ALL arises from B cell lineage-committed progenitors 
at various stages of their differentiation, such as pro-B or 
pre-B cells. The use of B cell-specific antigens including 
CD19, CD22, and CD20 as targets in B-ALL therapy has 
already proved very successful in clinical studies. On the 
other hand, CD72 was recently proposed as an alternative 
B cell-specific target, and proved its efficacy in preclinical 
models. The main features of these antigens and the cor-
responding immunotherapies are summarized in Table I  
and briefly described below.

CD19
CD19 is a B cell-specific molecule considered as a marker 
of B cells. Its expression starts during the B lineage com-
mitment from hematopoietic progenitors, and continues 
throughout all stages of B cell development up to plasma 
cells. CD19 is a type-I transmembrane protein, with a single 

transmembrane domain belonging to the immunoglobulin 
superfamily. It is a co-receptor of the B-cell receptor (BCR) 
and is involved in modulating BCR signaling [28]. Although 
its role in the promotion of the proliferation and survival 
of mature B cells is well-documented, its role in immature 
B cells is unclear. Importantly, CD19 expression is neither 
crucial for B-ALL cells viability and proliferation rate in vitro 
nor for B-ALL lymphoblasts’ engraftment and progression 
in vivo [29].

Nevertheless, as CD19 is ubiquitously expressed in 
B-ALL cells independent of the genetic subtype, it is uti-
lized as the main target for B-ALL immunotherapy. Upon 
binding to an antibody, CD19 internalizes, which makes 
it a suitable target for immune-conjugate therapy rather 
than for naked mAb [12]. Denintuzumab mafodotin and 
coltuximab ravtansine are ADC that have been already 
tested in clinical trials, but initial results have revealed 
low clinical responses in patients with R/R B-ALL [30]. 
Much better clinical responses have been achieved with 
the use of blinatumomab, a BiTE. Blinatumomab is a sin-
gle-chain, dual-specificity construct with the ability to rec-
ognize CD3 molecules on T cells and CD19 molecules 
on B cells, thus activating T cells to kill proximal B cells. 
The efficient renal clearance of blinatumomab results in 
its short half-life and enforces continuous infusions over 
several days [31]. Blinatumomab provides clear benefits 
over conventional consolidation chemotherapy [32] and 
is effective even in patients with therapy-related and con-
genital T cell impairments [33].

CAR-T cells recognizing CD19 antigen are pioneering, 
breakthrough therapy [2] and since 2017, CD19-CAR-T 
cells (tisagenlecleucel, kymirah) have been approved for 
the treatment of R/R B-ALL. However, despite remissions 
reaching up to 90% in some studies, the durability of this 
treatment is limited, with overall survival reaching only 
12.9 months [2]. There are several reasons behind CAR- 
-T cell therapy failure and both CD19-positive and CD19- 
-negative relapses have been detected. CD19-positive re-
lapses occur due to insufficient CAR T-cell expansion, lack 
of memory T cell formation resulting in poor CAR-T cell 
persistence, and immunosuppressive microenvironment. 
Extensive studies are underway aimed at optimizing CAR 
construction and their ex vivo manufacturing in order to 
increase their persistence and overcome the inhibitory 
environment [17].

CD19-negative relapses are the most frequent causes 
of CD19 CAR-T cell treatment failure in B-ALL. As men-
tioned, CD19 is dispensable for B-ALL cell survival, there-
fore various processes leading to CD19 loss, such as 
selection of CD19-negative clones, downregulation of 
CD19 mRNA, antigen masking, and trogocytosis have been 
detected in patients undergoing CD19-targeted therapy 
[34]. The challenges surrounding CAR-T cell therapy have 
been summarized in a recent review [35].
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CD22
CD22, like CD19, is a B cell-restricted protein. CD22 ex-
pression starts in the early stages of B cell development. 
In pro-B cells, it occurs as a cytoplasmic protein. At the 
late pre-B cell stage, CD22 appears on the cell surface, 
where it persists during all subsequent stages of B cell 
differentiation. CD22 is a type-I, single-pass membrane 
protein with the ability to bind sialic acid, and therefore it 
is also known as sialic acid-binding immunoglobulin-like 
lectin (SIGLEC-2). Interactions with sialylated ligands regu-
late the ability of CD22 to modulate B cell function. CD22 

contains intracellular immunoreceptor tyrosine-based 
inhibitory motifs (ITIM) and plays a role in the negative 
regulation of BCR signaling, by recruiting a cytoplasmic 
SRC homology 2 domain-containing protein tyrosine 
phosphatase-1 (SHP-1) [36]. Upon mAb binding, CD22 is 
promptly internalized [37], which makes it an ideal target 
for ADC. Indeed, it has been demonstrated that CD22 
may shuttle between endosomal compartment and a cell 
surface, enabling continuous transportation and intracel-
lular accumulation of pH-sensitive cargo, which contributes 
to the efficacy of CD22-targeting immunotoxins [38–40].

Table I. B cell-specific surface antigens used in clinics and tested in preclinical models as targets in B cell acute lymphoblastic leukemia 
(B-ALL) immunotherapy. Visualization of transmembrane topology performed with Protter [27]

Target 
antigen

Membrane topology Function Available immunotherapy Stage of development/ 
/references

B cell-specific targets

CD19 Single-pass type I 
membrane protein

Co-receptor for the BCR

B cell differentiation 
and proliferation

BiTE — blinatumomab Registered drug

ADC

Denintuzumab mafodotin

Coltuximab ravtansine

Clinical trials

CAR-T cells 
— tisagenlecleucel

Registered cellular 
therapy

CD22 Single-pass type I 
membrane protein

Involved in regulation of BCR 
signaling, both positive 

and negative

ADC

Inotuzumab ozogamycin

Registered drug

CAR-T cells Clinical trials

mAbs

Epratuzumab
Cinical trials

CD20 Tetraspanin Development, differentiation, 
activation of B cells

Ca2+ signaling

mAbs

Rituximab

Ofatumumab

Registered drug

Registered drug

CAR-T cells Clinical trials

CD72 Negative regulation of BCR 
signaling

Interaction with T cells

CAR-T cells Preclinical studies  
in vitro and in vivo

ADC — antibody-drug-conjugates; BiTE — bispecific T cell engagers; mAbs — monoclonal antibodies
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CD22 is expressed in the majority of B-ALL subtypes, 
hence it is employed as a target in B-ALL immunotherapy. 
Inotuzumab ozogamycine, a conjugate of cytotoxic drug 
ozogamycin with anti-CD22 mAb, is approved for the treat-
ment of adult and pediatric B-ALL patients who do not re-
spond to conventional chemotherapy [41]. Although it has 
a role in the treatment of R/R B-ALL, it can cause severe, 
life-threatening hepatotoxicity, which limits its use [42]. 
CARs targeting CD22 have also been developed [43–46]. 
Importantly, CD22-specific CAR-T cells exert cytotoxicity also 
in CD19-negative R/R B-ALL. The results of clinical trials 
testing the efficacy of CD22-CAR-T cells conducted mainly 
on B-ALL patients who relapsed from previous CD19 CAR- 
-T cell therapy revealed more than70% complete remis-
sion, but only 13.4 months overall survival [47]. In con-
trast, the very recent results of another two clinical trials 
(NCT02588456, NCT02650414) have reported very low re-
sponse rates [48]. Both the previous and the more recent 
clinical studies employed CARs with single chain variable 
fragment derived from the same antibody, and the length 
of the linker between the heavy- and the light-chain vari-
able domains was the only difference. Detailed preclini-
cal investigations have confirmed the impact of the linker 
length on tonic CAR-T cell signaling and consequent clinical 
efficacy, indicating that only fine differences in CAR con-
struction can significantly affect the clinical outcome [48].

CD20
CD20 is also a B lineage-restricted antigen, but it is 
ubiquitously expressed only in mature B cells, hence it is 
extensively used as an immunotherapy target in malignan-
cies derived from mature B cells. The expression of CD20 
starts already during B cell development, at the pre-B cell 
stage, and persists until B cells terminally differentiate 
into plasma cells. CD20 also occurs in B-ALL cells, but its 
expression is heterogeneous, often present only in a small 
proportion of the leukemic population, therefore only 25% 
of patients qualify for treatment with anti-CD20 immuno-
therapy [12]. CD20 is a type II transmembrane protein with 
four transmembrane helices. It is localized in lipid rafts, 
in close proximity to BCR, CD40, MHC-II, CD53, CD81, and 
other receptors. Although the precise physiological role of 
CD20 remains unclear, both human and animal studies 
suggest its involvement in B cell activation, Ca2+ signaling, 
and interaction of B cells with T cells and other cells of the 
microenvironment. A summary of CD20 structure, function, 
and gene regulation has been recently published [49].

In adult, but not in pediatric, B-ALL, the expression 
of CD20 is associated with a poor prognosis [50, 51]. 
A phase III trial conducted in Philadelphia (Ph)-negative 
B-ALL patients with CD20 expression revealed that the 
outcome of young adults can be improved by a combina-
tion of chemotherapy with rituximab, the anti-CD20 mAb 
approved for medical use in 1997 [52]. Rituximab is one 

of the best-studied immunotherapy drugs with low toxic-
ity and manageable side effects, but it is not effective in 
monotherapy. Hence, rituximab is being added to chemo-
therapy of adult B-ALL patients when at least 20% of leu-
kemic cells are CD20-positive. In pediatric B-ALL, the ben-
efit of the addition of anti-CD20 mAbs to chemotherapy 
has not been evaluated in a comprehensive way in clin-
ics. Anti-CD20 mAbs other than rituximab have not been 
extensively investigated in B-ALL patients. Some preclini-
cal studies suggest that obinutuzumab, a class II anti- 
-CD20 mAb, is superior to rituximab in vitro and in vivo [53]. 
CD20 may also be targeted by CARs. CAR-T cells simulta-
neously targeting CD19 and CD20 antigens were designed 
to overcome CD19-negative relapses. Indeed, in preclini-
cal models, CD19-CD20-bispecific CAR-T cells were more 
effective than any single antigen-specific CAR-T cells [54]. 
These dual CD19/CD20 CARs are already tested in clinical 
trials in patients with advanced R/R B cell malignancies 
(NCT04700319, NCT04007029).

CD72
Recently, Nix et al. [25] identified unique surfaceome 
of MLLr B-ALL subtype, with significant upregulation of 
adhesion-related proteins and downregulation of MHC-I 
and MHC-II molecules. This study also revealed significant 
overexpression and cell surface upregulation of CD72 in 
MLLr B-ALL.

CD72 is a B cell-specific protein which contains intracel-
lular ITIM domains and is involved in negative regulation of 
BCR signaling. It binds CD5 molecule on T cells, suggest-
ing its role in the crosstalk between B and T cells. CD72 is 
abundantly expressed in normal B cells and B cell-derived 
neoplasms, including B-ALL and B cell lymphomas [25]. 
Using an in vitro yeast display library, the authors devel-
oped CD72-binding nanobodies and inserted the sequenc-
es recognizing CD72 to lentiviral backbone derived from 
tisagenlecleucel to generate CAR-T cells targeting CD72. 
The CD72-directed CAR-T cells effectively killed CD72-ex-
pressing B-ALL and B cell lymphoma cell lines including 
CD19-negative cells, and were not toxic against normal 
cells including PBMC, IVECs, MSC, iPSC. Importantly, the 
CD72 CAR-T cells were also effective in vivo against MLLr 
B-ALL cell lines and patient-derived xenografts, without tox-
icity against normal tissue other that B cell ablation [25].

Overall, considering the aforementioned preclinical 
results, CD72 CAR-T cells are very promising candidates 
to be tested in clinical trials as a second-line treatment in 
patients relapsing after CD19-targeted immunotherapy.

Other targets
Other B cell-specific antigens such as CD23 [55], CD79b 
[56], CD37 [57], BAFFR [58], and BCMA [59] are currently 
being tested as CAR targets in malignancies derived from 
mature B cells, such as chronic lymphocytic leukemia, 
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non-Hodgkin lymphoma, and multiple myeloma. Most of 
these molecules are not abundantly present on normal 
immature B cells or in B-ALL cells [60–62]. BAFFR was 
shown to be expressed in some B-ALL subtypes, mainly 
E2A-PBX rearranged cells, but the levels were usually low 
to moderate [63].

Alternative targets in MLLr B-ALL

Particular efforts to identify targets alternative to CD19 
have been made in MLLr B-ALL, the extremely poor prog-
nosis subtype. The susceptibility of this subtype to undergo 
lineage switch and to lose B cell-specific antigens has 
prompted efforts to identify alternative, B cell-unrelated, 
targets. One such protein, chondroitin sulfate proteoglycan 
(CSPG4), also known as neuron-glial antigen 2 (NG2), has 
been already tested as a putative CAR target in MLLr B-ALL 
cell line KOPN8 in a proof-of-concept study [64]. NG2 is 
a diagnostic marker of MLLr B-ALL which is associated with 
leukemia invasiveness, central nervous system infiltration, 
and poor patient survival [65]. It was also found that NG2 
is important for MLLr B-ALL engraftment to NSG mice and 
that blockage of NG2 with mAbs leads to relocation of 
leukemic blasts from the bone marrow to peripheral blood, 
increasing sensitivity to chemotherapy [66]. However, NG2 
is present in only about 50% of leukemic blasts [66] and is 
also expressed in normal tissues [67], which are significant 
drawbacks limiting the utility of the antigen as a clinically 
relevant immunotherapy target.

Another approach proposed in MLLr B-ALL is the simul-
taneous targeting of two antigens, CD19 and CD133 [68]. 
CD133, also known as prominin 1 (PROM1), is a stem cell 
marker and a target gene of the MLL-AF4 oncoprotein [69]. 
CD133 is abundantly expressed in MLLr B-ALL and is main-
tained in CD19-negative leukemic cells. Tandem CARs tar-
geting CD19 and CD133 killed leukemic cells expressing 
only one of the antigens, but the CARs’ cytotoxic activity 
was superior when both antigens were present simultane-
ously, both in vitro and in vivo. However, as CD133 is also 
present on normal hematopoietic stem and progenitor cells 
(HSPC) at similar levels, the occurrence of on-target off-
tumor cytotoxicity has already been reported [70]. Further 
studies are needed to address the safety issue of these 
tandem CAR-T cells.

Summary, perspectives, concluding 
remarks

The success of CD19- and other B cell antigen-targeted 
therapies in B-ALL has already proved that cell type-spe-
cific antigens are appropriate targets for immunotherapy. 
However, as antigens currently applied in clinics are dis-
pensable for B-ALL cell survival, antigen loss is the major 
drawback and limitation of B-ALL immunotherapies. This 

can result from clonal heterogeneity of leukemic population 
and the selection of antigen-negative subclones or from 
treatment-related downregulation of target antigens [71]. 
In CAR-T cell therapy, the emerging approach to overcome 
this limitation is the use of bi- and tri-specific CARs [72]. 
Combinatorial targeting has already presented superior 
efficacy in preclinical models [68, 73] and dual-specificity 
CAR-T cells directed to CD19 and CD20/CD22 are already 
being assessed in clinical trials for the treatment of B cell 
malignancies. In this context, better characterization of 
clonal heterogeneity, predominantly with respect to target 
antigens expression, may translate into rational design 
of combinatorial immunotherapies and may diminish the 
risk of relapse.

Finally, novel surface antigens crucial for malignant cell 
survival should be identified and tested as potential alter-
native immunotherapy targets. This is particularly needed 
in subtypes derived from B cell precursors at early stages 
of B cell development and displaying phenotypic plasticity, 
such as MLLr B-ALL or TCF3-ZNF384 fusion. The broader 
range of possible immunotherapy targets may pave the 
way towards more effective and durable immunotherapies.
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