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Abstract
Introduction: The ferric reducing ability of plasma (FRAP) assay is used for measuring the antioxidant capacity. FRAP is 
proportional to the molar concentration of the antioxidant capacity. This study attempts to analyze the possibilities of 
FRAP as an indicator of oxidative stress.
Methods: Blood was drawn from male Wistar rats and stored for 20 days at 4°C in citrate phosphate dextrose adenine 1.  
The rats were divided into two groups: controls and experimentals. The experimentals were added with antioxidants  
— L-carnitine, curcumin, vitamin C (VC), and caffeic acid of varying concentrations — 10, 30, and 60 mM (n =5 for each 
group). Plasma was isolated from these samples at regular intervals (every 5 days), and FRAP and protein were assayed. 
Results were analyzed by two-way ANOVA, using GraphPad prism 6. FRAP was maintained in controls.
Results: VC (ascorbic acid) was the most potent antioxidant in terms of FRAP during storage compared with the above 
antioxidants. This study emphasizes the use of FRAP as a potential marker of oxidative stress in plasma of stored blood.
Conclusion: FRAP can be utilized as a reliable marker for determining the antioxidant capacity.
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Introduction

Ferric reducing ability of plasma (FRAP) is an assay that 
is used for measuring the antioxidant power. This assay is 
based on the reduction of a Fe3+ complex of tripyridyltriazine 
(Fe(TPTZ)3+) to Fe(TPTZ)2+ which is intensely in blue color at 
low pH. Excess Fe3+ is utilized and Fe(TPTZ)2+ is the rate-li-
miting factor. Thus the color formation reflects the reducing 
ability of the sample [1, 2]. However, FRAP was developed 
to give a more biologically relevant overview than individual 
biomarkers of oxidative stress (OS). Antioxidants (endoge-
nous and exogenous) together provide protection against 
reactive oxygen species (ROS) than individual compounds. 
Therefore overall antioxidant capacity, such as FRAP, gives 
a cumulative effect of all the antioxidants present than in-
dividual components. FRAP is the only assay that measures 
the antioxidants directly when compared with other assays 
that measure the inhibition of free radicals. FRAP is directly 

proportional to the concentration of the electron-donating 
antioxidants [3]. FRAP can be used as a single test for the 
estimation of total antioxidant capacity of blood. FRAP de-
scribes the prooxidant–antioxidant equilibrium better than 
other assays [4]. FRAP does not measure thiol antioxidants 
and the reduction of ferric ions [5, 6]. However, FRAP has 
gained importance as it is simple, cost-effective, straight-
forward, fast, and highly reproducible compared with other 
tests of total antioxidant capacity [4].

During storage of blood, OS is induced which causes 
irreversible damage that limits its shelf life [7]. OS repre-
sents an imbalance between the ROS produced and the 
biological system’s ability to counteract or detoxify the 
ROS or repair the resulting damage caused [8]. Blood and 
its components are stored in different storage solutions. 
The most commonly used storage solution is citrate phos-
phate dextrose adenine 1 (CPDA-1). Blood and its compo-
nents possess an innate antioxidant system that helps in 
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cartilage and slightly to the left of the midline. Of note, 
4–5 mL of blood was carefully aspirated from the heart into 
5 mL polypropylene collection tubes with CPDA-1 (sodium 
dihydrogen orthophosphate 2.22 g/L, citric acid 3.27 g/L, 
sodium citrate 26.3 g/L, dextrose 31.9 g/L, and adenine 
0.27 g/L) [35].

Experimental design
Blood was drawn from 65 male Wistar rats (4 months old) 
and divided into two groups: controls and experimentals. 
The experimentals were added with antioxidants — LC, Cu, 
VC, and CA of varying concentrations — 10, 30, and 60 mM 
and n =5 for each group and stored for 20 days at 4○C. 
Plasma was isolated from whole blood at regular intervals 
(every 5 days) and assayed for FRAP (Figure 1).

Plasma separation
Plasma was isolated from 1 mL whole blood in microcentri-
fuge tubes by centrifuging in a fixed angle rotor for 20 min 
at 1,000 g. The plasma was removed and stored at -20○C 
for further assays [36].

Ferric reducing ability of plasma
The FRAP assay was performed as described by Benzie and 
Strain [2]. In brief, sample was added to freshly prepared 
FRAP reagent (300 mM acetate buffer [pH 3.6], 10 mM 
TPTZ, and 20 mM FeCl3). The reaction mixture was incuba-
ted for 5 min at 37○C and absorbance was read at 593 nm. 
FRAP was determined by using the extinction coefficient of 
21,250 mM-1cm-1.

Protein estimation
Protein was determined in the plasma by the method of 
Lowry et al. [37], using bovine serum albumin (BSA) as 
the standard.

Statistical analyses
Results are represented as mean ± standard error (SE). 
Values between the groups (storage period) and subgroups 
(antioxidants) were analyzed by two-way ANOVA and were 
considered significant at p <0.05. Bonferroni post-test was 
performed for FRAP using GraphPad Prism 6 software.

Results

Results are represented as 1) changes during the storage 
in all groups with day 0 and 2) changes between different 
concentrations against control on a particular day.

FRAP was maintained during storage in controls. Chan-
ges in FRAP were significant in all experimental groups.

L-carnitine
FRAP increased by 85% and 52% on days 10 and 20, 
respectively, against day 0 in LC 10. Decrements of 80% 

protecting itself against the ROS [9]. Since plasma holds 
all the blood’s cellular components in suspension, it provi-
des an overview of the OS microenvironment over storage.

Free radicals are highly unstable molecules that can 
cause OS, triggering cellular damage. Antioxidants combat 
these free radicals, thereby providing a protective effect 
[10]. An antioxidant is defined as “any substance that, when 
present at low concentrations compared to those of an oxi-
dizable substrate, significantly delays or prevents oxidation 
of that substrate” [11]. Various studies have reported the 
beneficial effects of antioxidants (L-carnitine [LC], curcumin 
[Cu], vitamin C [VC]) in blood storage solutions [12–22].

LC (l-3 hydroxy-4-N-N-N-trimethylaminobutyrate) is one 
of the nutrient-derived, non-enzymatic antioxidants, which 
plays an important role in fatty acid turnover. LC, the biolo-
gically active stereoisomer, is an endogenous compound 
derived from the diet or synthesized in the liver from lysine 
and methionine. It acts as an antioxidant that reduces me-
tabolic stress in cells, thus reducing OS [21, 23].

Cu (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadie-
ne-3,5-dione) or diferuloylmethane, a component of Cur-
cuma longa (turmeric), possesses antioxidant activity and 
free radical scavenging activity. Cu increases intracellular 
glutathione (GSH) and regulates antioxidant enzymes. It 
also protects oxyhemoglobin from nitrite-induced oxida-
tion [12, 22].

VC or ascorbic acid is a cofactor for at least eight en-
zymatic reactions. Ascorbic acid acts as a reducing agent. 
The oxidized forms of VC are semidehydroascorbic acid 
and dehydroascorbic acid. Ascorbate is maintained in its 
reduced state by glutathione and NADPH-dependent rea-
ctions [24, 25].

Caffeic acid (CA; 3,4-dihydroxycinnamic acid) and its 
conjugates (chlorogenic acid and caftaric acid) are power-
ful antioxidants [26]. They are ubiquitous in nature, found  
in almost every plant. Thus, there is a high potential to 
utilize this antioxidant [27]. They prevent the formation of 
mutagenic and carcinogenic compounds as they inhibit the 
N-nitrosation reactions [28].

Studies have reported the use of FRAP to determine the 
antioxidant capacity of various extracts [29–33]. However, 
FRAP as an OS marker during blood storage has not been 
reported. Thus, this study attempts to analyze the possibi-
lities of FRAP as an indicator of OS.

Methods

Animal care and maintenance was in accordance with the 
ethical committee regulations (841/b/04/CPCSEA).

Blood sampling
Animals were lightly anesthetized with ether and restrained 
in dorsal recumbancy as described earlier [34]. In brief, 
the syringe needle was inserted just below the xyphoid 
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were observed in LC 30 and LC 60 on all days when com-
pared with day 0.

Increments of 100% and 55% were observed on days 
10 and 20, respectively, in LC 10 against their controls. 
FRAP increased by 73% on day 0, while it decreased by 73% 
(days 5 and 20), and 65% (days 10 and 15) in LC 30 and 
LC 60 with controls (Figure 2).

Curcumin
FRAP increased by 51% in Cu 10 on day 10 and 100% in 
Cu 30 from day 10 to day 20, and Cu 60 on days 5, 10, 15, 
and 20 against day 0. Changes in FRAP were insignificant 
in Cu 10 against controls. FRAP elevated by twofold on days 
10, 15, and 20 in Cu 30 with respect to controls. Elevations 
of one-fold (days 5 and 15) and two-fold (days 10 and 20) 
were also observed in Cu 60 (Figure 3).

Vitamin C
FRAP levels decreased by 63% (day 10), 37% (day 15), 
and 55% (day 20) against day 0 in VC 10. Elevation of 
42% was observed on day 5, whereas decrements of 
44%, 22%, and 27% were observed on days 10, 15, 
and 20 in VC 30. FRAP elevated by 13-fold (days 5 and 
10), 16-fold (day 15), and 1-fold (day 20) in VC 60. FRAP 
increased by twofold on days 0 and 5 in VC 10 against 
their respective controls. Increments of threefold (day 
0), fourfold (day 5), onefold (day 10), and twofold (days 
15 and 20) were observed in VC 30 against controls. 
FRAP also elevated by threefold on days 5, 10, and 15 
in VC 60 (Figure 4).

Caffeic acid
FRAP was maintained in CA samples throughout the storage 
period. A decrement of 32% was observed in CA 10 on day 

Figure 2. Effect of L-carnitine on ferric reducing ability of plasma 
(FRAP) during storage. LC 10 = L-carnitine 10 mM, LC 30 = L-carnitine 
30 mM, and LC 60 = L-carnitine 60 mM. Values are mean ± stan-
dard error (SE) of five animals per group. Two-way ANOVA was 
performed between the groups and subgroups to analyze FRAP, 
followed by Bonferroni post-test, using GraphPad Prism 6 software. 
Changes between the groups (storage period) are represented in 
upper case. Changes within the groups (treatment–antioxidant con-
centrations) are represented in lower case. Those not sharing the 
same letters are significantly different; A, B, C, D, E — changes be-
tween the groups (storage days); a, b, c — changes within the groups 
(treatment-antioxidant concentrations on a particular day)
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Figure 1. Experimental design; CPDA-1 — citrate phosphate dextrose adenine 1; FRAP — ferric reducing ability of plasma
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20 when compared with day 0. FRAP increased by 100% on 
days 0, 5, 10, and 15, and 56% on day 20 in CA 10 against 
controls. Increments of twofold were observed on all days 
in CA 30. FRAP also elevated by threefold (days 0 and 10) 
and twofold (days 5, 15, and 20) in CA 60 (Figure 5).

Discussion

FRAP is proportional to the molar concentration of antioxi-
dants present. An increase in FRAP value is usually a desi-
rable phenomenon as it proves a better protection against 
OS [38]. FRAP assay depends on the reduction of the TPTZ 
complex (Fe3+ to Fe2+) by a reductant (plasma constituents) 
at low pH. The Fe2+ complex results in the blue coloration 
that can be detected at 593 nm [8, 39].

FRAP was maintained in controls over the storage pe-
riod, indicating that the innate antioxidant system present 
in plasma can combat the OS induced during storage.

LC is an effective antioxidant as it possesses radical 
scavenging (superoxides, hydrogen peroxide), metal che-
lating activity, and great reducing power [40]. It contribu-
tes to the antioxidant defense by 1) directly scavenging 
free radicals, 2) preventing the formation of free radicals,  
3) maintaining the redox state of cells, and 4) activating 
vitagens [41]. LC also stabilizes the energy balance across 
cell membranes and enhances carbohydrate metabolism, 

Figure 4. Effect of vitamin C on ferric reducing ability of plasma 
(FRAP) during storage. VC 10 = vitamin C 10 mM, VC 30 = vitamin 
C 30 mM, and VC 60 = vitamin C 60 mM. Values are mean ± stan-
dard error (SE) of five animals per group. Two-way ANOVA was 
performed between the groups and subgroups to analyze FRAP, 
followed by Bonferroni post-test, using GraphPad Prism 6 software. 
Changes between the groups (storage period) are represented in 
upper case. Changes within the groups (treatment–antioxidant 
concentrations) are represented in lower case. Those not sharing 
the same letters are significantly different; A, B, C, D, E — changes 
between the groups (storage days); a, b, c, d — changes within the 
groups (treatment-antioxidant concentrations on a particular day)
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Figure 3. Effect of curcumin on ferric reducing ability of plasma 
(FRAP) during storage. Cu 10 = curcumin 10 mM, Cu 30 = curcum-
in 30 mM, and Cu 60 = curcumin 60 mM. Values are mean ± stan-
dard error (SE) of five animals per group. Two-way ANOVA was 
performed between the groups and subgroups to analyze FRAP, 
followed by Bonferroni post-test, using GraphPad Prism 6 software. 
Changes between the groups (storage period) are represented in 
upper case. Changes within the groups (treatment–antioxidant 
concentrations) are represented in lower case. Those not sharing 
the same letters are significantly different; A, B, C, D, E — changes 
between the groups (storage days); a, b, c — changes within the 
groups (treatment-antioxidant concentrations on a particular day)
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along with maintaining the cell volume and fluid balance 
[42], thus protecting the erythrocyte membrane. LC redu-
ces OS as it increases the antioxidant activity and sulfhy-
dryls while it reduces lipid peroxidation [43]. LC at 10 mM 
is more beneficial than at 30 and 60 mM in terms of FRAP. 
LC at 10 mM may be the optimum concentration to main-
tain the antioxidant capacity.

Cu (phenolic chain-breaking antioxidant) donates hydro-
gen atoms from the phenolic group or through the central 
methylenic hydrogen. This is responsible for the antioxidant 
property of Cu [44, 45]. Cu at higher concentrations upre-
gulates the antioxidant enzyme activity and reduces lipid 
peroxidation and protein oxidation [12]. Thus FRAP was di-
rectly proportional to the concentration of Cu.

VC reduces metal ions (such as iron) that are present 
in the active sites of mono- and dioxygenases. It acts as 
a co-substrate rather than a coenzyme [46]. Ascorbate also 
assists in the regeneration of a-tocopherol from the a-to-
copheryl radical. It reacts with radicals to form an interme-
diate radical (ascorbate radical) of low reactivity. [47]. VC 
at all concentrations upregulated FRAP. This can be attri-
buted to VC’s potent ferric reducing ability. It reduces Fe3+ 
similar to hydroxylamine [48].

CA protects a-tocopherol in low-density lipoprotein [26]. 
CA and its analogs are antioxidants with multiple mecha-
nisms that include free radical scavenging and metal ion 
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chelation, and they inhibit free radical and lipid hydrope-
roxide formation [49]. CA increased FRAP at all concentra-
tions and hence FRAP was proportional to the concentra-
tion of CA. This can be attributed to CA’s potent free radi-
cal scavenging, metal chelating property, and its effective 
reducing power. It has a greater reducing power than the 
standard compounds such as butylated hydroxytoluene, 
butylated hydroxyanisole, trolox, a-tocopherol, etc. [26].

Conclusion

FRAP is a potential marker of OS in plasma of stored blood 
as it reflects the antioxidant capacity and has a positive 
correlation with 2,2-diphenyl-1-picrylhydrazyl (DPPH) radi-
cal scavenging activity [29]. Thus, FRAP can be utilized as 
a reliable marker for determining the antioxidant capacity. 
VC (ascorbic acid) was the most potent antioxidant in terms 
of FRAP during storage, with respect to the above antioxi-
dants (VC > CA > Cu > LC).
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