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Abstract
Elevated D-dimer and fibrinogen level, mild thrombocytopenia, modest prolongation of prothrombin time, and 
activated partial thromboplastin time, are key indicators of coagulopathy, and have been consistently reported 
in severely ill COVID-19 patients. Coronavirus disease 2019 (COVID-19)-induced coagulopathy can develop 
serious venous and arterial thromboembolic complications. Endothelial dysfunction and hypercoagulability, 
triggered mostly by overproduction of inflammatory cytokines as an immune response to the infection, are the 
pivotal factors responsible for the above-mentioned coagulation disorder. Thus, low-molecular-weight heparin 
(LMWH), which has both anticoagulant and anti-inflammatory properties, has been reported to improve disease 
prognosis. However, there have been  increasing reports of venous thromboembolic events for intensive care 
unit patients suffering from COVID-19 despite the use of prophylactic doses of LMWH. Alternative clinical ap-
proaches involve the use of other antithrombotic agents, antiplatelet therapy, tissue plasminogen activator, and 
non-pharmacological tools. Ample cohort studies and clinical trials are needed to justify all these approaches of 
treatment. Finally, the discovery of several COVID-19 vaccines has reduced fatality from the disease enormous-
ly. However, prudent clinical practice still requires a circumspect response in order to deal with any potentially 
deleterious effects of coagulopathy.
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Introduction

Severe acute respiratory syndrome coronavirus-2 (SARS- 
-CoV-2) infections, or Coronavirus disease 2019 (COVID-19), 
had resulted in over 6.9 million deaths and over 768 million 
infections globally as of 19 July, 2023 according to the World 
Health Organization (WHO) [1]. Acute respiratory distress 
syndrome (ARDS) induced by pulmonary embolism, venous, 
arterial, and microvascular thrombosis, and lung endothelial 

injury, is the most common cause of disease severity. The 
association between coagulopathy and infectious disease 
has been well recognized and extensively studied. Clinical 
features include either thrombosis or bleeding or both. 
Although the incidence of bleeding events is rare, growing 
evidence suggests an increased risk of both arterial (stroke, 
myocardial infarction) and venous (deep vein thrombosis, 
pulmonary thromboembolism, venous sinus thrombosis) 
thrombotic complications  in COVID-19 patients admitted to 
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enzyme 2 (ACE2) receptor, is expressed in multiple organs, 
including the lungs, heart, kidneys, and intestines. ACE2 
receptors are also widely expressed by the endothelial cells. 
Thus, there is a possibility that the virus may damage the 
endothelium, leading to vascular derangement. Indeed, 
viral elements have been shown to be present within en-
dothelial cells across vascular beds of different organs of 
COVID-19 patients [5]. Endothelium invasion by the virus, 
associated with the disruption of cellular membranes, leads 
to the loss of the fibrinolytic function of attacked cells, 
predisposing to thrombus formation [6].

Elevated levels of inflammatory cytokines [interleu-
kin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), in-
terleukin-1 beta (IL-1 beta), interleukin-2 receptor (IL-2R)] 
induced by the infection may also lead to endothelial dys-
function. IL-6 is believed to enhance endothelial permea-
bility which occurs via remodeling of endothelial cell ad-
herens and ultrastructural distribution of tight junctions. 
Not only IL-6, but hepatocyte growth factor (HGF), have also 
been reported to directly contribute to endothelial disrup-
tion and vascular leakage. An increased HGF level was ob-
served in severe, compared to non-severe, COVID-19 pa-
tients with 84% sensitivity and 98% specificity [7]. Other 
mechanisms, such as a reduction of endothelial nitric ox-
ide synthase activity and nitric oxide levels, as well as the 
release of vascular endothelial growth factor (VEGF) as 
a consequence of the systemic hypoxia induced by ARDS, 
have also been proposed to be responsible for endotheli-
al dysfunction following COVID-19 infection. Ruhl et al. [8] 
in their observational study, identified the massive release 
of seven core plasma proteins i.e. CXCL8-10, HGF, IL-6,  
IL-12 (p40), and stem cell growth factor-beta (SCGF-beta), 
in severe COVID-19 indicating endothelial damage. The 
increased permeability of endothelial cell monolayers pro-
motes the secretion of more and more cytokines from en-
dothelial cells (ECs), contributing to a highly inflammatory 
microenvironment [9]. Vessel damage also leads to a mas-
sive release of prothrombotic von-Willebrand factor (vWF) 
from Weibel-Palade bodies. Thus, the inability of the endo-
thelium to maintain vascular hemostasis consequently es-
calates platelet aggregation and thrombosis. Furthermore, 
endothelial dysfunction can also lead to intussusception 
angiogenesis (IA), which has been observed in various or-
gans in deceased COVID-19 patients [10, 11].

Abnormal blood flow
Thrombotic complications in COVID-19 patients can also 
be explained by abnormal blood flow, the least interro-
gated component of Virchow’s Triad. Hyperviscosity has 
been often observed in patients with COVID-19 due to the 
elevated level of fibrinogen which is a major determinant 
of blood viscosity [12]. ACE2 receptor engagement by the 
virus elevates angiotensin II level, resulting in vasocon-
striction and decreased blood flow. Prolonged bed rest 

the intensive care unit (ICU) [2]. The high mortality rate of 
the disease can be attributed to various thrombotic events, 
especially in elderly patients with comorbidities. Autopsy 
reports have revealed pulmonary embolisms in large as well 
as small lung vessels as the direct cause of death in more 
than one in three patients with a diagnosis of COVID-19.

It might prove useful here to consider the principle of 
Virchow’s Triad in order to understand the pathophysiology 
behind the occurrence of thrombosis in COVID-19 (Figure 1).  
The triad, as proposed by the eminent German physician 
Rudolph Ludwig Karl Virchow, identified three broad risk 
factors for the development of arterial and venous throm-
bosis: 1) endothelial dysfunction; 2) hypercoagulability; 
and 3) abnormal blood flow [3]. Of these, hypercoagula-
bility is the most widely studied and it is considered to be 
the primary trigger for thrombotic disorders. Many of the 
treatment options available for the disease target one of 
these three factors [4].

Virchow’s Triad observed in COVID-19

All three elements of Virchow’s Triad, observed in COVID-19, 
can nicely illustrate the genesis of coagulopathy in severely 
ill COVID-19 patients (Figure 2).

Endothelial dysfunction
Numerous post mortem histopathological examinations 
in patients who have died of COVID-19 have revealed that 
endothelial dysfunction is a crucial pathological feature of 
the disease. It can be induced either by direct viral entry or 
by indirect immune response and inflammatory mediators. 
The receptor for coronavirus, the angiotensin-converting 

Figure 1. Virchow’s Triad observed in coronavirus disease 2019 
(COVID-19). Hypercoagulability along with endothelial dysfunction 
and abnormal blood flow are observed in severely ill COVID-19 
patients, causing various coagulation disorders; neutrophil extra-
cellular traps (NETs)
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and immobilization in an ICU, strict isolation, and limited 
physiotherapy could also contribute to reduced blood flow.

Hypercoagulability induced  
by inflammation, neutrophil extracellular 
traps, and impaired anticoagulant activity 
in COVID-19
Severely ill COVID-19 patients have a pronounced hyper-
coagulability state triggered by enhanced procoagulant 
activity due to inflammation caused by systemic immune 
reactions, platelet dysfunction and reduced blood flow. 
Inflammation due to innate immunity response can typically 
affect initiation, propagation, and inhibitory phases of blood 
coagulation. Tissue factor (TF) plays a central role in the 
initiation of inflammation-induced coagulation. In severe 
sepsis, mononuclear cells stimulated by proinflammatory 
cytokines express tissue factor, which leads to systemic ac-
tivation of coagulation. Subrahmanian et al. [13] reported 
significantly higher expression of TF in the lung tissues of 
COVID-19 patients compared to TF in control lungs of acute 
respiratory distress syndrome (ARDS) patients.

Mechanistically, the assembly of the prothrombinase 
and tenase complex is facilitated on a suitable phospholip-
id surface provided by TF-bearing cells and activated plate-
lets. Activated platelets are generally produced by endo-
toxin, proinflammatory platelet activating factor, and/or by 
thrombin itself in inflammation-induced coagulation. Zhang 

et al. demonstrated that SARS-CoV-2 and its spike protein 
can directly enhance platelet activation in mice [14]. Ac-
tivated platelets on binding neutrophils and mononuclear 
cells can induce the activation of nuclear factor kappa B, 
which in turn markedly potentiates the production of IL-1b, 
IL-8, monocyte chemoattractant protein-1, and TNF-alpha. 
Thus, activated platelet not only promotes hypercoagula-
bility, but is also responsible for a proinflammatory state in 
seriously ill COVID-19 patients. A meta-analysis by Lippi et 
al. revealed that low platelet count (indicative of activated 
platelet) is associated with increased risks of severity and 
mortality in patients with COVID-19 [15]. In this context, 
it is also important to mention the contribution of neutro-
phil extracellular traps (NETs) towards hypercoagulability 
in many thrombo-inflammatory states including sepsis, 
thrombosis, and even respiratory failure. Platelet-neutrophil 
interaction releases NETs decorated with functional phos-
phatidylserine. The NET structure thereby provides a sup-
port to which procoagulant factors can adhere, leading to 
the formation of thrombin and fibrin [16]. Mechanistically, 
NETs either may directly activate the extrinsic pathway or 
initiate the intrinsic pathway by inducing TF expression in 
endothelial cells [17–19].

Cytokine-mediated activation of platelet and neutrophil, 
and NET formation, have been observed in COVID-19 pa-
tients having thrombotic complications [20]. A strong neu-
trophil infiltration was observed by Barnes et al. [21] 

Figure 2. Endothelial dysfunction as observed in coronavirus disease 2019 (COVID-19). Endothelial cell membrane disruption can occur either 
by (A) direct viral attack or by (B) indirect immune immune response in COVID-19, leading to various hemostatic abnormalities; ACE — angiotensin- 
-converting enzyme; ECs — endothelial cells; HGF — hepatocyte growth factor; IL-6 — interleukin-6; NO — nitric oxide; VEGF — vascular en-
dothelial growth factor
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in the pulmonary microthrombi and bronchial tissue of 
COVID-19 patients. Petito et al. [22] demonstrated that 
NET formation, rather than activated platelet, is associat-
ed with thrombosis in COVID-19 patients. Therefore, NET 
as a biomarker should be considered as a predictor of 
COVID-19-associated thrombotic complications. Further-
more, although platelet and neutrophil activation become 
normalized after recovery, NET biomarkers do not return 
to normal levels, possibly due to their contribution to the 
continued inflammatory reaction in such patients.

The impairment of anticoagulant pathways during in-
fection-induced thrombo-inflammation is another major 
contributor to hypercoagulability. Antithrombin (AT), acti-
vated protein C (APC), and tissue factor pathway inhibi-
tor are the three main targets, the activities of which are 
regulated by inflammatory cytokines leading to a proco-
agulant state. Heparin bound AT is the main inhibitor of fac
tor (fXa) and thrombin. AT levels have been observed to 
be markedly decreased during an infection, because of 
various reasons such as reduced synthesis, degradation 
by elastase, and consumption by thrombin. Cytokines 
can also cause reduced synthesis of glycosaminoglycans 
which in turn leads to loss of AT function. Low AT level 
has been found to be an important contributor to hyper-
activation of hemostasis in COVID-19 patients [23, 24]. 
Plasma concentrations of AT were shown by Tang et al. 
[25] to be lower in COVID-19 non-survivors than in sur-
vivors (84% of normal in non-survivors vs. 91% in survi-
vors), although plasma concentrations of AT rarely drop 
below 80% of normal. Another study linked low AT levels 
with a high mortality rate: AT levels were significantly low-
er in 16 non-survivors compared to 33 survivors (72.2 ±  
± 23.4 vs. 94.6 ± 19.5%; p = 0.0010) among 49 hospi-
talized patients with COVID-19 and was suggestive of me-
chanical ventilation for patients [26]. However, more data  
is required to ascertain any strong correlation between 
AT level and thrombosis in COVID-19 patients. APC and 
tissue factor pathway inhibitor (TFPI) have not been con-
sidered to be affected by COVID-19-induced inflamma-
tory response. However, another endogenous anticoag-
ulant protein S (PS), regulating the activity of both APC 
and TFPI, is purported to play a crucial role in COVID-19- 
-associated coagulopathy. An IL6-driven cytokine explo-
sion, as well as hypoxemia, may downregulate PS level in 
COVID-19 patients, exacerbating the risk of thrombosis 
as suggested by Chatterjee et al. [27]. Indeed, a signifi-
cant drop in plasma PS levels [28, 29] and activity [30], 
have been reported in COVID-19 patients. Acquired PS 
deficiency in COVID 19 could be attributed to increased 
consumption, clearance, or degradation, by decreased 
synthesis, or by binding to other plasma proteins (mostly 
C4BP) as proposed by Sim and Wood [31].

Thrombocytopenia has also been identified as a clini-
cal manifestation of COVID-19 in half of the patients, and 

in almost 95% of cases the condition was found to be seri-
ous [32]. However, bleeding is rare even in the presence of 
DIC with thrombocytopenia. Three mechanisms of reduced 
platelet count leading to thrombocytopenia were proposed 
by Xu et al. [33]. Decreased platelet count may be either 
due to platelet destruction by the immune system, or due 
to enhanced platelet consumption for the formation of mi-
crothrombi in the damaged lung tissue. In addition, it is 
also believed that the virus inhibits hematopoiesis in bone 
marrow through certain receptors causing reduced platelet 
production, and finally leading to thrombocytopenia. In ad-
dition to that, heparin can also induce thrombocytopenia, 
as we discuss in the next segment.

Long-COVID and thrombosis

Severely affected COVID-19 survivors, even after recovery, 
may experience the post-acute sequelae of COVID-19 
known as ‘long-COVID’. This is a multisystem disability syn-
drome that includes fatigue (47%), dyspnea (32%), myalgia 
(25%), joint pain (20%), headache (18%), cough (18%), 
chest pain (15%), olfactory abnormality (14%), taste chang-
es (7%), and/or diarrhea (6%) [34]. Heart abnormalities, 
cognitive impairment, sleep disturbances, post-traumatic 
stress disorder (PTSD), and concentration problems have 
also been reported. Persistent coagulation abnormalities 
and thrombosis are very common in long-COVID, as has 
been reported by several studies. Thus, long-COVID is of-
ten considered to be a thrombotic sequel. Effective early 
treatment to reduce the degree of thrombotic damage is 
the only therapeutic option available for long-COVID, as it 
can potentially mitigate long-term thrombotic sequelae.

Treatments available to combat  
COVID-19-induced coagulopathy

Based on the pathophysiology of COVID-19-induced coag-
ulopathy, therapeutic interventions aim either to decrease 
the risk of clot formation through anticoagulants and an-
tiplatelet agents, or to reduce clot burden through direct 
clot lysis with a fibrinolytic agent.

Heparin
Low-molecular-weight heparin (LMWH) and unfractionat-
ed heparin (UFH) are widely used as an antithrombotic 
drug for COVID-19 patients. As per the reported protocol, 
non-critically ill hospitalized patients should be adminis-
tered full-dose heparin. This increases the probability of 
survival until hospital discharge with reduced ICU-level 
organ support [35]. However, full dose heparin treatment 
is discouraged for critically ill patients, due to a higher 
mortality rate [36].

Heparin therapy improved oxygenation of 27  
COVID-19 patients in a Brazilian hospital. A significant 
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increase in PaO2/FiO2, a marker for respiratory distress, 
was observed after anticoagulation therapy for 72 hours. 
PaO2/FiO2 increased from 254 (±90) to 325 (±80) (p = 
= 0.013) [37]. Tang et al. [38] reported that the use of 
anticoagulant treatment resulted in decreased mortal-
ity in patients with coagulopathy. 99 of 449 patients 
with severe COVID-19 received LMWH for seven days or 
longer. No difference in 28-day mortality was found be-
tween heparin users and non-users (30.3% vs. 29.7%,  
p = 0.910). However, 28-day mortality of heparin users 
was lower compared to non-users in patients with SIC 
(sepsis induced coagulopathy) score ≥4 (40.0% vs. 64.2%,  
p = 0.029), or D-dimer >6-fold of upper limit of normal 
(32.8% vs. 52.4%, p = 0.017). Although the mechanism is 
unclear, increasing numbers of patients developing resis-
tance to heparin treatment have also been reported [39].

Several cases of heparin-induced thrombocytope-
nia (HIT) have also been reported in heparin treated 
COVID-19 patients. HIT is a common side effect of the ther-
apeutic and prophylactic use of heparin, something which is 
often overlooked but which poses a significant challenge in 
hospitalized patients on heparin treatment. Heparin binds 
to platelet factor 4 (PF4) and provokes autoreactive anti-
bodies against PF4/heparin (PF4/H) complex in patients 
with HIT [40]. These antibodies against PF4/H complex 
spur the release of prothrombotic platelet-derived micro-
particles, platelet consumption, and induce thrombocyto-
penia. Microparticles in turn can also induce thrombosis 
by promoting excessive thrombin generation. The pooled 
incidences of HIT were higher in critically ill patients with 
COVID-19 [2.2%, 95% confidence interval (CI): 0.6–8.3%, 
I2 = 72.5%] compared to non-critically ill patients (0.1%, 
95% CI: 0.0–0.4%, I2 = 0%) as reported in a meta-analy-
sis [41]. Also, the estimated incidences were 1.2% (95% 
CI: 0.3–3.9%, I2 = 65%) versus 0.1% (95% CI: 0.0–0.4%,  
I2 = 0%) in therapeutic vs prophylactic heparin subgroups, 
respectively. Regular evaluation of platelet count is a com-
mon practice for patients treated with heparin for the man-
agement of HIT as set out in the 2006 guidelines by the 
Hemostasis and Thrombosis Task Force of the British Com-
mittee for Standards in Hematology [42]. In adverse situa-
tions, heparin therapy should be stopped, and alternative 
anticoagulant treatment options should be explored. Argo-
troban had been reported to be an efficient alternative an-
ticoagulant used after the diagnosis of HIT [43].

Other anticoagulants
Other potential antithrombotics include antithrombin 
agents such as bivalirudin, direct oral anticoagulants 
(DOACs), danaparoid, and sulodexide. However, thorough 
clinical investigations are required to decide upon the op-
timum dosage, duration of treatment, and probable side 
effects of these agents. Defibrotide, a nucleic acid–derived 
antithrombotic agent with additional pharmacological 

effects, is currently being investigated in clinical trials at 
a fixed dosage and continuous infusion protocols [44].

Natural products also hold promise as complemen-
tary drugs for recovering from hemostasis disorders in 
COVID-19 patients [45]. These are cheaper and less toxic 
than synthetic drugs. Based on their thrombotic activity, 
they are classified as antiplatelet aggregation, anticoagu-
lant, and fibrinolytic acting drugs. Natural products such 
as polysaccharides, polypeptides, polyphenol, alkaloids, 
and terpenoids obtained from both terrestrial and marine 
sources can act as antithrombotic agents [46]. Seaweed 
polysaccharides have been proposed as a potential anti-
coagulant drug to treat coagulopathy due to COVID-19 [47, 
48]. However, to date there have been no experimental 
findings on the use of these natural products as support-
ive therapy for patients suffering from COVID-19.

Antiplatelet therapy
Vessel damage, and not hypercoagulability, is believed to 
induce platelet aggregation and activation that are reported 
frequently in patients suffering from COVID-19. Hyperac-
tivity of platelets plays a pivotal role in the pathogenesis 
of arterial thrombosis (AT). Acetylsalicylic acid (ACA), gly-
coprotein (GP) IIb/IIIa inhibitors (GP IIb/IIIaI), and P2Y12 
adenosine 5’diphosphate receptor blockers (P2Y12-ADP 
RB) are major antiplatelet reagents used to treat COVID-19 
patients with hemostatic disorders.

ACA is very successful in managing vascular events 
in AT. ACA irreversibly inhibits the enzyme cyclooxygenase 
(COX-1) which in turn reduces the synthesis of thrombox-
ane, which is necessary for platelet aggregation and further 
platelet activation. According to another view, aspirin facili-
tates the inhibition of platelet activation by neutrophils, an 
effect that appears to be mediated by a nitric oxide (NO)/cy-
clic guanosine monophosphate (cGMP)-dependent process 
[49]. Although several studies show the successful usage 
of aspirin as an antiplatelet agent in treating COVID-19 pa-
tients, other reports have advocated against its use. Aspi-
rin could not prevent clinical deterioration in a randomized 
controlled trial with 900 reverse transcription polymerase 
chain reaction (RT-PCR) positive COVID-19 patients requiring 
hospitalization [50]. In another randomized, double-blind, 
placebo-controlled phase II clinical trial in adult patients with 
adult respiratory distress syndrome, no noticeable differ-
ence on day 7 in terms of oxygen index (OI) was observed 
in an aspirin administered group vs a placebo group [51].

P2Y12-ADPRB is supposed to improve ADP-induced 
platelet hyperreactivity. In a multicenter international pro-
spective registry of 7,824 enrolled patients, the use of 
P2Y12-ADPRB was associated with lower mortality and 
shorter duration of mechanical ventilation: only 9% of pa-
tients were admitted to the ICU [52]. In another prospective 
case series of only five patients, improvement of blood oxy-
genation was observed with combined antiplatelet therapy 
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including P2Y12-ADPRB [53]. However, there have been 
some reports which did not exhibit any improvement of 
thrombotic complications against antiplatelet therapy with 
P2Y12-ADPRB [54–56]. Another antiplatelet agent, GP IIb/ 
/IIIaI, is a potent, rapid, and selective blocker of platelet 
aggregation, and therefore can ideally induce dissolution 
of blood clots and prevent further clot formation. Never-
theless, so far, no prospective randomized clinical trial has 
been performed to prove its efficacy [57].

Tissue plasminogen activator
Fibrinolytic therapy has been found to be an effective 
treatment for ARDS, as fibrin deposition in the pulmonary 
microvasculature is one common cause of the disease. 
Thus, the use of tissue plasminogen activator (t-PA) in 
the treatment of ARDS has been proposed  [58]. t-PA 
has higher efficacy of clot lysis compared to the other 
fibrinolytic agents, with a similar bleeding risk. Goyal et al. 
[59] reported the successful use of a low dose of t-PA in 
three COVID-19 patients with severe ARDS who were on 
the verge of intubation. Wang et al. [60] reported three 
cases of using t-PA in critically ill, mechanically ventilated 
COVID-19 positive patients with ARDS. Although all three 
cases exhibited initial improvements in their P/F ratio, the 
effect was durable only for one patient. Improvements were 
transient and lost over time in the other two.

Non-pharmacological approaches

Non-pharmacological approaches have also been con-
sidered for COVID-19 patients with serious bleeding com-
plications. Thromboprophylactic stockings, mechanical 
compression devices, calf compression pumps, and elec-
trical neuromuscular stimulation devices are a few of the 
non-pharmacological tools in practice [61]. The overall aim 
of using these devices is to reduce the stasis component 
of Virchow’s Triad. They are mostly applied to reduce the 
venous load for thrombosis and consequently the risk of 
DVT in patients infected with COVID-19. In addition, cath-
eter directed thrombolysis, hyperbaric oxygen therapy, and 
transarterial drug delivery have also been used to treat 
different complications of COVID-19 [62–64].

Vaccination

The discovery of vaccines for SARS-CoV-2 was a hugely 
significant breakthrough in managing the COVID-19 pan-
demic. Established knowledge about the structure and 
function of coronaviruses helped the rapid development 
of vaccines during early 2020 [65]. As of 22 July, 2023, 
more than 13 billion COVID-19 vaccine doses had been 
administered worldwide. These COVID-19 vaccines are 
widely credited for reducing the spread, severity and deaths 
caused by COVID-19. Vaccination has also been reported 

to exert a protective effect against long-COVID  [66]. Two 
dose vaccination has a lower risk of long-COVID compared 
to either no vaccination at all [odds ratio (OR) 0.64, 95% 
CI: 0.45–0.92], or one dose vaccination (OR 0.60, 95% CI: 
0.43–0.83), as revealed by the meta-analysis.

Vaccine-induced immune  
thrombotic thrombocytopenia

Vaccination, in the past, induced various autoimmune 
disorders such as immune thrombotic thrombo-cytopenic 
purpura (ITP) [67]. There have been several reports of post 
COVID-19 vaccination-associated thrombotic events, nota-
bly in individuals who received adenovirus-based vaccines 
developed by AstraZeneca. These thrombotic episodes have 
been termed variously vaccine-induced prothrombotic im-
mune thrombocytopenia (VIPIT), vaccine-induced (immune) 
thrombotic thrombocytopenia (VITT), vaccine-associated 
(immune) thrombotic thrombocytopenia (VATT), and throm-
bosis with thrombocytopenia syndrome (TTS).

In March 2021, due to reports of thromboembol-
ic events among people administered with the vaccine 
ChAdOx1, vaccination with Oxford–AstraZeneca (AZ) was 
halted in a number of European countries [68]. Schultz 
et al. [69] reported five cases with high mortality (3/5, 
60%, died), presenting thrombotic symptoms 7–10 days 
post the AZ vaccine. They had marked thrombocytopenia 
(range 14–70 × 109/L), raised D-dimer (range from 13 to 
>35 mg/L), and generally low fibrinogen (3/5 tested had 
<2 g/L). Four of these five patients were young (age range: 
32–54) women [69].

However, according to the German Society of Throm-
bosis and Hemostasis (GTH), out of c.2.2 million AZ 
COVID-19 vaccine doses administered, a total of only 
31 cases of sinus or cerebral vein thrombosis have been 
reported. These thromboses occurred 4–16 days post 
vaccination, and concomitant thrombocytopenia was re-
ported in 19 patients, becoming fatal in nine. Of these 
reported 31, 29 were women aged 20–63 years and two 
were men aged 36 and 57 years [70]. Greinacher et al. 
[71] reported 11 patients, aged 22–49, having thrombotic 
complications 5–16 days post vaccination. Nine patients 
developed cerebral venous thrombosis, three developed 
splanchnic-vein thrombosis, and three developed pulmo-
nary embolisms. All patients had concurrent thrombo-
cytopenia with the platelet count ranging from 9,000 to 
107,000/mm3. Of the seven patients tested for d-dimers, 
all had elevated levels ranging from 1.8 to 142 mg/L (ref-
erence value 0.5 mg/L). Five patients had reduced fibrin-
ogen levels. However, there are also reports refuting the 
risk of coagulopathy after vaccination, and it is believed 
that the number of thromboembolic events in vaccinated 
people is not more than the pre-pandemic incidence rate 
among normal populations [72]. 
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Finally, based on reports by the European Medical Agen-
cy’s (EMA’s) Pharmacovigilance Risk Assessment Commit-
tee (PRAC), it has been concluded that the “benefits of vac-
cination still outweigh the risks despite a possible link to 
rare blood clots with low blood platelets”.

Conclusions

The underlying mechanisms of COVID-19-associated 
coagulopathy in severely ill patients are not completely 
understood. However, interactions among conventional 
clotting factors, platelet activation, endothelial dysfunction, 
TF secretion, and anticoagulant depletion, coupled with 
a severe ‘cytokine storm’, appear to trigger varying degrees 
of disease severity.

There is no ‘one size fits all’ treatment for every pa-
tient diagnosed with clotting abnormalities. A targeted, 
precision medicine, approach should be directed to treat 
each individual patient governed by his or her symptoms 
severity, comorbidities, past medical history, and current 
medication. However, vaccination remains fundamental to 
avoiding disease severity.
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