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Dyskeratosis congenita  
as a multifaceted bone marrow disorder
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Abstract
Dyskeratosis congenita (DC) is a rare multisystem clinical entity caused by genetic mutations associated with telo-
mere biology disorder. The symptoms include bone marrow dysfunction as well as skin and mucosal abnormalities. 
In severe cases, DC is characterized by high mortality rates among children. In milder subtypes, it is less detectable 
in adults, due to the occurrence of cryptic forms of the disease. To date, more than 15 mutated genes have been 
shown as causative for DC.
The aim of this study was to provide a brief description of the currently known clinical and genetic characteristics of 
DC, and to elucidate the molecular pathogenesis.
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Molecular background

The integrity of the genome is a crucial aspect of maintain-
ing all processes in a living cell. Any disruptions related 
to this have far-reaching consequences, leading to cell 
death through apoptosis [1]. If this mechanism fails, dis-
ruptions in the cell cycle and division can lead to further 
rearrangements, ultimately resulting in transformation and 
malignancy [2, 3].

One of the important mechanisms involved in genome 
maintenance are telomeres [4]. Telomeres are nucleop-
rotein complexes located at the ends of eukaryotic chro-
mosomes, consisting of protective proteins and a double, 
non-coding DNA strand containing G-rich repeats (TTAGGG)n,  
ending with a single strand at the 3’ end. Telomere length 
depends on many aspects, including interspecies differ-
ences, interindividual differences, and differences between 
cells of the same organism [5–7]. Variable telomere lengths 
have been observed depending on the cell type, its metabol-
ic rate, age, or inheritance. In the case of mammalian cells, 

their length ranges from 2 kb to 14 kb, for example, in sperm, 
the length is estimated to be between 10 kb and 14 kb, 
while in somatic cells, it is a few thousand base pairs [7].  
In the umbilical cord blood of a newborn, the average telo-
mere length is around 10 kb [8].

The main function of telomeres is to maintain the in-
tegrity of the genome during replication. Being located at 
the ends of chromosomes, they prevent their fusion and 
thus limit the possibility of random recombination with oth-
er chromosomes. Along with proteins, they form a specific 
secondary structure at the ends of telomeres, a protruding 
single 3’ strand (overhang), called the T-loop. Loops protect 
the ends of chromosomes from the accidental response of 
repair systems during replication [9, 10].

Telomeres are also a kind of response to the so-called 
‘end replication’ problem, which was first described over 
50 years ago [11]. This is a result of the imperfection of 
the replication process, or rather the activity of DNA poly-
merase, which synthesizes a new strand only in one direc-
tion from the 5’ to the 3’ end. For replication to proceed in 
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both directions, DNA on the lagging strand must be syn-
thesized in short Okazaki fragments from RNA primers. 
When the replicase reaches the end of the chromosome, 
the nearest RNA primer on the lagging strand cannot be 
replaced with DNA or it would fall off the chromosomal 
DNA. Therefore, the 3’ end of the strand lacks a synthe-
sized DNA fragment. In this case, the telomeric DNA on the 
sister strand serves as a template, according to which the 
missing fragment of chromosomal DNA is synthesized, and 
the loss of the fragment of the 3’ end strand is on the side 
of the telomeric DNA [12–16]. This mechanism is consid-
ered a molecular biological clock that determines the limit 
of cell division, and this is called the Hayflick limit [17, 18].

Several proteins are responsible for maintaining the in-
tegrity and functionality of telomeres, including three key 
protein complexes: 1) telomerase, responsible for elon-
gating telomeres; 2) shelterin complex, binding to the sin-
gle-stranded ends of telomeres; and 3) CST complex, which 
also modulates the activity of telomerase by limiting its ac-
cess to telomere ends.

Telomerase is a ribonucleoprotein DNA polymerase de-
pendent on RNA with properties of reverse transcriptase, 
responsible for synthesizing telomeres during the S and  
M phases of the cell cycle [19]. Telomerase is a holoen-
zyme composed of several key subunits, with TERT (hTERT 
in humans) responsible for the main elongation activity of 
the complex, which is a subunit with reverse transcriptase 
activity that catalyzes the elongation of telomeric DNA. The 
TERC/TR subunit (hTR in humans) is responsible for the 
RNA matrix, on which the new DNA strand is synthesized 
[20, 21]. The remaining subunits are associated with the 
biogenesis and stability of the entire complex: dyskerin 
(pseudouridine synthase) binds to a specific TERC RNA 
motif (HA/ACA box), stabilizing this structure and thus con-
tributing to the enzymatic stability of the entire complex.

In addition, the NOP10, NHP2, and GAR1 subunits sta-
bilize the process of TERC maturation, performing isomer-
ization of uridine to pseudouridine, stabilizing the spatial 
conformation of rRNA [22]. During maturation, NAF1 is 
a chaperone protein that supports TARC maturation, and 
during this process it is replaced by GAR1 which stabilizes 
the mature form [23]. Other important elements associat-
ed with telomerase complex maturation include the PARN 
ribonuclease and the TCAB1 protein. The former is respon-
sible for the maturation of the TERC transcript, as well as 
DKC1 and TRF1 by removing the poly(A) tail [24, 25]. The 
latter is a protein responsible for recruiting the complex to 
the Cajal bodies at the ends of telomeres [26].

The attachment of telomerase to telomeres is tightly 
controlled, and one of the mechanisms of control is the 
six-protein complex shelterin, which controls the recruit-
ment of telomerase to telomeric DNA [27]. The main pro-
teins that stabilize the binding to DNA are the TRF1 and 
TRF2 subunits. Both of these bind to the double-stranded 

structure and inhibit the attachment of telomerase by cre-
ating a spatial structure (t-loop) [28]. These subunits are 
structurally stabilized by TIN2 [29], which also provides 
a scaffold for the next protein — TPP1, responsible for the 
recruitment and attachment of telomerase [30]. An ex-
tremely important component of the protective complex is 
POT1, which binds to the single strand at the 3’ end of the 
telomere, creating a specific secondary structure (D-loop) 
that protects the end from recognition by RPA1, one of the 
activators of the homologous repair system [31–34]. The 
RAP1 subunit, along with TRF2, is responsible for inhibiting 
non-homologous end joining (NHEJ) [35, 36].

An additional complex that regulates the activity of telo-
merase and interacts with the protective complex is the 
CST complex, consisting of three subunits [37]. The main 
component is CTC1, which along with the STN1 subunit in 
mammalian cells is responsible for inhibiting the attach-
ment of telomerase to telomeres by physical interaction 
with POT1 and TPP1 [38]. Both subunits have the ability 
to directly bind to the single strand of telomeric DNA. The 
third, smallest subunit (TEN1) does not have DNA binding 
properties, but is responsible for stabilizing the interaction 
between the other components. In addition, the CTC1 sub-
unit is responsible for recruiting DNA polymerase α, which 
is responsible for replicating chromosomes during cell divi-
sion [39]. The relationship among the various complexes in-
volved in telomere length maintenance is shown in Figure 1.

In humans, telomerase expression is high during early 
embryogenesis, but in most somatic cells it is silenced, with 
the exception of hematopoietic cells, stem cells, activated 
lymphocytes, and male germ cells [40, 41]. Furthermore, it 
is estimated that increased overexpression and overactivity 
of telomerase occurs in c.80% of human somatic cell tu-
mors, clearly linked to escaping cell cycle checkpoints and 
abolishing the Hayflick limit [42–44]. Interestingly, the ex-
pression of the TERT subunit can be stimulated in infected 
cells by certain viruses, such as Epstein-Bárr virus (EBV), 
cytomegalovirus (CMV), human papillomavirus (HPV), hep-
atitis B virus (HBV), hepatitis B virus (HCV), and Kaposi’s 
sarcoma-associated herpesvirus (KSHV) [45].

As described, each of the individual components of the 
complexes has a significant importance in the biogenesis, 
maintenance, and stability of telomeres. Disruptions in any 
of them can lead to diseases associated with telomere bi-
ology disorders (as presented in Table I). This review will 
discuss the most important diseases associated with telo-
mere biology disorders.

Dyskeratosis congenita:  
clinical manifestations

The first reports of a lethal, genetic disease characterized 
by mucocutaneous and hematological disorders were 
published in 1906 by Zinsser, and later in 1926 and 1930 
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Table I. Germinal mutations associated with telomere biology disorder and other diseases (in brackets phenotype OMIM database number)

Localization Gene  
(protein/ 
/product)

Cytogene-
tics

Function Loss of function Inheri-
tance 
model

Clinical pre-
sentation

Non-TBD 
syndrome

Mutation 
frequency 
of TBD

Telomerase 
complex

TERT 
(hTERT)

5p15.33 Recruitment of the 
complex, telomere 
elongation

Inhibition  
of recruitment, 
elongation  
and telomerase 
activity

AD DC 
(613989), 
AA, PF, LD, 
MDS, AML 
(601626)

CMM9 
(615134)

10–20%

AR HH <1%

TERC te-
lomerase 
RNA com-
ponent 
(hTR)

3q26.2 RNA template, telo-
mere elongation

Inhibition of telo-
merase activity

AD DC 
(127550), 
AA, PF 
(614743), 
LD, HH, 
MDS, AML

10–20%

DKC1  
(dyskerin)

Xq28 Complex assembly, 
hTR stabilization

Decreased hTR 
stability and telo-
merase activity

XLR 
(X-lin-
ked)

DC 
(305000), 
HH, PF

10–20% 
of males

NOP10 
(NOP10, 
NOLA3)

15q14 Biogenesis and sta-
bilization of hTR

Decreased hTR 
stability and telo-
merase activity

AR DC 
(224230)

<1%

NHP2 
(NHP2, 
NOLA2)

5q35.3 Biogenesis and sta-
bilization of hTR

Decreased hTR 
stability and telo-
merase activity

AR DC 
(613987)

<1%

NAF1 4q32.2 Biogenesis and sta-
bilization of hTR

Decreased hTR 
stability and telo-
merase activity

AD LD, PF 
(620365), 
MDS

<1%

WRAP53 
(TCAB1)

17p13.1 Trafficking through 
Cajal bodies, telo-
merase recruitment

Inhibition  
of telomerase 
recruitment  
to telomeres

AR DC 
(613988), 
HH

<1%

Figure 1. Three crucial complexes and their particular subunits involving in maintenance telomers length, each is of which is essential for 
proper telomer maintenance machinery

→
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by Engman and Cole. The disease was then called Zinss-
er-Engman-Cole syndrome [46].

Today, it is known as congenital dyskeratosis (DC), 
a rare multi-systemic disease caused by disturbances 
in telomere biology, primarily their shortening, which is 

documented in 90% of patients [47]. DC strongly predom-
inantly affects males. Clinical features vary widely. DC can 
manifest as the classical triad associated with dermatolog-
ical disorders: reticular hyperpigmentation, nail dystrophy, 
and leukoplakia. Other characteristics include premature 

Localization Gene  
(protein/ 
/product)

Cytogene-
tics

Function Loss of function Inheri-
tance 
model

Clinical pre-
sentation

Non-TBD 
syndrome

Mutation 
frequency 
of TBD

Shelterin 
complex

TINF2 
TIN2 

14q12 Regulation of te-
lomerase activity, 
recruitment of Shel-
terin to telomeres, 
protection of telome-
res from DDR

Disruption  
of telomere  
maintenance

AD, 
S (de 
novo)

DC 
(613990), 
HH, PF, RS 
(268130 ) 

10–20%

ACD 
(TPP1) 

16q22.1 Recruitment of telo-
merase and telome-
rase activity

Disruption 
of telomerase 
recruitment

AD DC 
(616553), 
AA

<1%

AR DC, HH 
(616553)

<1%

POT1 7q31.33 Interaction with CST 
complex, telomere 
protection from 
DDR, telomerase 
inhibition

Disruption  
of telomere  
replication  
and telomerase 
negative 

AD PF 
(620367)

GLM9 
(606478), 

CMM10 
(615848)

–

AR CP 
(620368)

<1%

CST  
complex

CTC1 17p13.1 Telomere replica-
tion, telomerase 
inhibition

Disruption  
of telomere  
replication  
and telomerase 
inhibition

AR DC, CP 
(612199)

<1%

STN1 10q24.33 Telomere replica-
tion, telomerase 
inhibition

Disruption  
of telomere  
replication  
and telomerase 
inhibition

AR CP 
(617341)

<1%

RTEL1 
(RTEL1)

20q13.33 Telomere replica-
tion, T-loop stability

Disruption  
of telomere  
replication

AD DC 
(615190), 
AA, PF, LD,

10–20%

AR HH, DC <10%

PARN 16p13.12 Maturation and sta-
bility of hTR

Decrease in hTR 
stability, inhibi-
tion of telomera-
se activity

AD PF 
(616371)

10–20%

AR DC 
(616353), 
HH

<1%

ZCCHC8 
(ZCHC8)

12q24.13 Maturation of hTR Impaired  
of telomerase 
function

AD PF 
(618674)

<1%

DCLRE1B 
(Apollo)

1p.13.2 Interacts with TRF2 
at telomers, invol-
ving on cross-link 
DNA repair 

Chromosome 
instability 

AR DC 
(620133), 
HH

<1%

AA — aplastic anemia; AD — autosomal dominant; AR — autosomal recessive; CMM — cutaneous malignant melanoma; CP — Coats plus; DC — dyskeratosis congenita; DDR — DNA damage response; GLM — 
glioma susceptibility; HH — Hoyeraal-Hreidarsson syndrome; LD — liver disease; PF — pulmonary fibrosis; RS — Revesz syndrome; S — somatic; XLR — X-linked

Table I. cont. Germinal mutations associated with telomere biology disorder and other diseases (in brackets phenotype OMIM database number)
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graying of the hair, osteoporosis, lacrimation, dental ab-
normalities, and gastrointestinal diseases. Additionally, 
testicular atrophy may occur. Furthermore, the disorders 
can involve the bone marrow, leading to bone marrow fail-
ure (BMF) and predisposing to malignancies, as well as 
contributing to pulmonary and hepatic fibrosis. The esti-
mated prevalence of congenital dyskeratosis is 1–9 per 
1,000,000 individuals (ORPHA code: 1775, OMIM pheno-
type number for DKC1 variant: 305000).

Mucocutaneous symptoms are very common in DC. 
Reticulated pigmentation changes are observed in 90% of 
cases, often appearing in the first decade of life they can 
also be present as congenital pigmentation changes [48]. 
Nail dystrophy can manifest in the early months of life or 
in late adolescence, and occurs in 88% of patients diag-
nosed with DC. Leukoplakia occurs in 80% of cases and 
exhibits variable progression. It can be observed at birth 
or in patients several months old. It may be visible on the 
tongue, the cheek, or on both simultaneously. Additional-
ly, 16% of patients experience hair and eyebrow changes, 
including premature graying or loss [49, 50].

In addition, idiopathic pulmonary fibrosis can develop 
in patients with DC and, for many of them, this may be one 
of the first symptoms of telomere-related disorders. They 
can be revealed by dry rales, dry cough, or dyspnea, and 
hypoxemia with exertion is usually one of the earliest signs. 
With disease progression, hypoxemia occurs at rest [51].

Therefore, in the case of such a symptom occurring in 
a young individual, DC should be considered in the diag-
nostic process. In these cases, mutations are most com-
monly autosomal dominant in nature, and are associated 
with particular genes: TERT, RTEL1, TERC, TINF2, DKC1, 
PARN [52]. Furthermore, pulmonary fibrosis is one of the 
more severe complications/consequences associated 
with hematopoietic stem cell transplantation (HCT), which 
is the only treatment option for patients with BMF. In the 
long term, this can be one of the leading causes of death 
due to infections and impairment of lung function, such 
as reduced lung capacity and impaired gas exchange [53, 
54]. Additionally, it has been reported that pulmonary ar-
teriovenous malformations, without fibrosis features, can 
occur in patients with DC [55, 56].

Progressive bone marrow failure is common and occurs 
in 80% of cases [57]. Due to pancytopenia and dysfunc-
tional immune cells, the majority of deaths are caused by 
viral infections such as CMV, HBV, herpes simplex virus 
(HSV), and fungal infections including Candida spp., Pneu-
mocystis jiroveci, and Aspergillus spp., as well as bacteri-
al infections including Pseudomonas aeruginosa infection 
leading to sepsis [49, 58–60]. Patients with DC are high-
ly susceptible to developing leukemia and squamous cell 
tumors in the head and neck region. The symptoms and 
course of the disease depend on the specific gene muta-
tions involved (set out in Table I).

Genetics of DC

To date, several genes directly associated with telomere 
activity, maturation, and biogenesis have been described 
including ACD, DCK1, TER, TERC, NOP10, NHP2, NAF1, 
TINF2, POT1, WRAP53, CTC1, STN1, TEN1, RTEL1, PARN, 
DCLRE1B and ZCCHC8. The inheritance pattern is diverse 
and mainly involves germline mutations, including au-
tosomal dominant and recessive inheritance, as well as 
X-linked inheritance [56]. The most common type is X-linked 
inheritance, as evidenced by a male-to-female disease inci-
dence ratio of 13:1 [61]. The type of inheritance depends 
on the specific mutations and is associated with the types 
of symptoms and the course of the disease. The severity 
of the disease correlates with the age at symptom onset: 
the earlier the onset, the more severe the course. In very 
severe cases, symptoms can appear in newborns or even 
during fetal life, manifesting as multi-systemic dysfunction. 
In adolescence or adulthood, the classical clinical trial  
PF is not always observed, and DC may present in cryptic 
variants, only manifesting as respiratory, liver function, 
or hematological disorders [62, 63]. Based on the above 
description, DC can be divided into two main types, cryptic 
and severe, taking into account the severity of symptoms.

Cryptic variants of DC

Cryptic variants often manifest as single or oligosymptom-
atic disorders that occur in early adulthood or middle age. 
In these cases, DC manifests as diseases that primarily 
cause other disorders and initially show no apparent 
links to telomere biology (TBD). Due to the absence of the 
classical triad and the late clinical manifestation, patients 
are often misdiagnosed. The most common conditions 
associated with cryptic variants are aplastic anemia (AA) 
and idiopathic pulmonary fibrosis (PF) [62, 63]. Similarly 
as in the ‘classical’ form, patients are at risk of developing 
myelodysplastic syndrome (MDS) and acute myeloblastic 
leukemia (AML) [64].

Heterozygous variants in TERT, TERC, and RTEL1 are 
typically detected in cryptic TBD, presenting as PF or BMF 
[65, 66]. These mutations lead to the inhibition of telomer-
ase activity (preventing telomere elongation) and disrup-
tions in telomere replication during cell division.

Severe DC variants

Hoyeraal-Hreidarsson
Hoyeraal-Hreidarsson syndrome (HHS or HH) is a severe 
variant of DC that manifests with clinical severity from 
a very young age. In addition to the classical symptoms 
associated with DC, patients with HHS suffer from im-
mune deficiencies, intrauterine growth retardation, and 
neurological disorders such as developmental delay and 
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cerebellar aplasia, which are characteristic features of 
this syndrome. Molecular studies have shown exception-
ally short telomeres in leukocytes compared to patients 
with other subtypes of DC [67]. The cause of the severe 
disease course and additional symptoms are mostly 
recessive or X-linked mutations characterized by the 
absence of a second ‘healthy’ allele. This is evident in 
specific genes such as TERT, WRAP53, TPP1, and PARN, 
where autosomal recessive (AR) mutations lead to the 
development of HHS, similar to mutations in the DKC1 
gene [67, 68].

Furthermore, an additional biallelic mutation in the 
RTEL1 gene has been associated with the occurrence 
of HHS [69]. However, mutations in the TINF2 and TERC 
genes have also been reported to be inherited in an au-
tosomal dominant manner, where a single ‘healthy’ copy 
of the allele is insufficient to prevent the manifestation 
of symptoms.

Revesz syndrome
Revesz syndrome (RS) is an extremely rare subtype of DC 
and, similar to HHS, is characterized by extremely short 
telomeres, even compared to other subtypes of DC. So far, 
only a few cases of RS have been described. The variant is 
characterized by the classical triad of DC symptoms, along 
with severe bone marrow disorders manifested as aplastic 
anemia, noticeable in children up to the age of 2, and in 
milder courses, in patients up to the age of 6 [70, 71].  
Additionally, neurological symptoms such as cerebellar 
hypoplasia and intracranial calcifications are observed. 
Moreover, a characteristic feature is bilateral exudative ret-
inopathy, which can manifest from 6 months. The disease 
often exhibits a very severe course, leading to the death 
of the patient in childhood or adolescence, with patients 
rarely surviving past the age of 12: median survival is  
6.5 years [71].

The occurrence of this syndrome is attributed to a muta-
tion in the TINF2 gene, inherited in an autosomal dominant 
manner. However, this mutation does not always lead to RS 
but can also result in HHS or a milder course, with clinical 
characteristics closer to classical DC [71, 72].

Coats plus syndrome or cerebroretinal  
microangiopathy with calcifications  
and cysts (CRMCC)
Coats plus syndrome (CP), similar to other severe sub-
types of DC, is characterized by multisystemic disorders, 
with predominant neurological symptoms including leu-
kodystrophy, intracranial calcifications, and brain cysts. 
These pathological changes in the brain lead to cognitive 
impairment, spasticity, dystonia, and ataxia. Additionally, 
CP presents with Coats syndrome-like symptoms such as 
telangiectasia and retinal exudates. There is also a high risk 
of gastrointestinal bleeding due to vascular abnormalities 

(ectasia) [73]. Some patients exhibit classical mucocuta-
neous manifestations, as well as hematological disorders 
such as thrombocytopenia and anemia [74, 75].

The midbrain changes have a similar characteristic to 
Labrune syndrome, but these two diseases differ in terms 
of genetic abnormalities [75]. The syndrome is associated 
with autosomal recessive mutations in the CST complex in-
volving the genes STN1 and CTC1, which form this complex, 
as well as the POT1 gene, whose product directly interacts 
with CST [76, 77]. These mutations lead to telomere rep-
lication disorders.

Diagnosis

Due to the complex clinical picture of congenital dyskerato-
sis, establishing the correct diagnosis can be challenging, 
especially in cryptic variants. Therefore, in the diagnostic 
process, Fanconi anemia (FA) and other inherited BMF 
disorders such as Shwachman-Diamond syndrome (SDS) 
or SDS-like Diamond-Blackfan anemia should be ruled 
out — for example, by determining chromosomal fragility, 
which allows FA to be distinguished from DC. Additionally, 
in differential diagnosis, it is worth excluding other genetic 
syndromes associated with nail dysplasia, such as twen-
ty-nail dystrophy, nail-patella syndrome, and poikiloderma 
with neutropenia [56].

If the following variants occur, the patient should be 
considered as having congenital dyskeratosis: 1) if clas-
sical mucocutaneous symptoms are present (at least one 
of them) along with accompanying bone marrow failure; 
2) if all three ‘classical’ mucocutaneous symptoms are 
present; 3) patients with AA, MDS, PF in whom other 
etiologies have been excluded and mutations related to 
telomere biology (presented in Table I) have been con-
firmed; 4) patients presenting specific symptoms asso-
ciated with severe progression related to subtypes: HHS, 
RS, and CP, such as cerebellar hypoplasia, underdevel-
opment, BMF, or retinopathy and referred for further di-
agnosis [78, 79].

The gold standard diagnostic methods for suspected 
DC encompass genetic tests employing next-generation 
sequencing (NGS) and flow-fluorescence in situ hybrid-
ization (flow-FISH) cytometric tests for telomere length 
determination. Flow-FISH tests are based on determin-
ing the total telomere length in the tested material. It is 
essential to consider age, tissue type, and cell character-
istics when selecting appropriate controls for diagnostic 
purposes. A diagnosis pointing towards DC is deemed af-
firmative when the results fall below the 1% percentile of 
telomere length observed in healthy controls (e.g. in bone 
marrow this is below 8 kb up to the age of 5, whereas for 
a healthy individual of the same age, 100% corresponds 
to approximately 12 kb). An alarming result is considered 
within the range of 10% to 1% percentile (approximately 
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9 kb to 8 kb) compared to a healthy control [80]. In both 
of the aforementioned cases, further diagnostic proce-
dures, such as genetic testing, should be pursued to 
confirm the result. The first-line tool for qualitative ge-
netic changes is targeted sequencing should encompass 
genes most frequently associated with telomere biology 
disorders (TBD). To identify the copy number variations 
(CNVs), a molecular cytogenetic method such as a com-
parative genomic hybridization (CGH) array or SNP array 
should be applied. The last one additionally identifies the 
single nucleotide variants [81]. If previous methods give 
negative results and the patient’s symptoms indicate DC, 
it is necessary to extend the analysis using whole exome 
sequencing (WES). The latest, promising, method of de-
tecting large-scale structural variants is optical genome 
mapping (OGM) which can be used for DC diagnostics 
[82]. A flowchart representation of the diagnostic sche-
ma is presented in Figure 2.

Conclusions

Today, we have increasing knowledge about telomere 
biology disorders (TBD). However, there are clinical cases 
that appear to be unrelated to TBD but still exhibit telomere 

dysfunction, as demonstrated by Janczar et al. [83]. Fur-
thermore, the number of patients with cryptic variants of 
the disease is unknown. Currently, treatment is symptom-
atic and depends on the type and severity of symptoms.

A promising hypothesis for targeted therapy is androgen 
therapy. This is based on the hypothesis that androgens 
increase telomerase activity through the TERT promoter, 
which may be associated with estrogen response, although 
the detailed molecular mechanism is not yet fully under-
stood. Preclinical in vivo studies in mice and in vitro studies 
on cell lines have shown associations between androgen 
treatment and telomere elongation. However, the results 
of clinical studies are inconclusive. Two out of four studies 
have demonstrated telomere lengthening after the admin-
istration of androgens (using danazol, oxymetholone, and 
nandrolone) using flow-FISH and qPCR tests. It is worth 
noting, however, that these were small studies with small 
representative groups. Little is known about the long-term 
effects of using specific androgens in TBD [84, 85].

Therefore, it will be important to further explore the 
topic of telomere disorders, especially cryptic variants, and 
investigate the possibilities of their occurrence in conjunc-
tion with other medical conditions. Improving and dissemi-
nating diagnostic protocols is also crucial.

Figure 2. Dyskeratosis congenita diagnostic schema; AA — aplastic anemia; AML — acute myeloblastic leukemia; BMF — bone marrow fail-
ure; CAMT — congenital amegakaryocytic thrombocytopenia; DC — dyskeratosis congenita; DBA — Blackfan-Dimond anemia; FA — Fanconi 
anemia; flow-FISH — flow-fluorescence in situ hybridization; MDS — myelodysplastic syndrome; NCPF — non-cirrhotic portal fibrosis; SDS — 
Shwachman-Diamond syndrome; TBD — telomere biology disorder
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