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a b s t r a c t

We have performed detailed analysis of the genomic landscape of commercially available

K562 cells, employing targeted enrichment of nearly 1300 cancer-related genes followed

by next-generation sequencing (NGS) and also classical cytogenetics. Deep sequencing

revealed 88 variants of potentially biological significance. Among them we have detected

alterations in genes already known to be mutated in K562, such as TP53 but also in

several other genes, which are implicated in tumorigenesis and drug resistance, such as

MLH1, ASXL1 and BRCA1 as the most prominent examples. Fluorescence in situ hybridiza-

tion (FISH) of interphases of K562 cells revealed multiplication of the BCR and ABL1 gene

copies, as well as the amplification of the BCR-ABL1 fusion gene. Our results may help to

better understand genomic instability of the blastic phase of CML represented by the

K562 cell line and can help researchers who want to employ this cell line in various

experimental settings.
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Introduction

Chronic myeloid leukemia (CML) is a clonal hematopoietic
stem cell disorder characterized by the increased and
deregulated growth and maturation of myeloid cells in the
bone marrow. Disease is caused by reciprocal chromosomal
translocation t(9;22)(q34;q11) which results in the genetic
abnormality called the Philadelphia chromosome (Ph),
encoding fusion gene [1]. BCR-ABL1 encodes a constitutively
active oncogenic tyrosine kinase BCR-ABL1, which trans-
forms hematopoietic stem cells by activating several prolif-
erative and antiapoptotic pathways, but also by increasing
genomic instability. One of the most frequently used CML
cell line model is the K562 BCR-ABL1-positive human
erythroleukemia cell line, which was derived in 1970 from
a pleural effusion of a female patient with CML in blastic
phase (CML-BP, also known as blast crisis) [2], decades
before the era of targeted therapy with tyrosine kinase
inhibitors. K562 cells do not express MHC molecules on their
surface and serve also as one of the typical target cells for
measuring activity of NK cells [3, 4]. Therefore, K562
represents an important tool for the studies of malignant
hematopoiesis as well as for the studies on the molecular
pathogenesis of leukemia and human cancer in general.
This is reflected by the fact that a number of publications
mentioning K562 available in PubMed exceeds 800 per year
in recent years and totals in more than 16.000 publications
since 1975 with K562 among the key words. The cell line
was cytogenetically characterized many times giving differ-
ent results. K562 karyotype was described as hypodiploid in
short term cultures and near triploid in long time cultures[2]
but also Ph-positive hyperdiploid karyotypes [5], Ph positive
and near triploid[6] or Ph-negative and near triploid [7, 8].
Possible reasons for such discrepancy include genomic
instability of K562 cell line, especially in the long-term
culture, amplification BCR-ABL1 oncogene but also new muta-
tions in DNA repair genes (such as MLH1) described in this
work. However, despite so numerous research employing
K562 cells a detailed genomic analysis of this cell line is not
available and so far there are no publications describing
genomic landscape of K562 cell line. To accurately character-
ize genetic features of K562 cell line that is currently used in
leukemia research, we performed next-generation sequen-
cing (NGS) of K562 cell line DNA from the early passage. We
also investigated the copy number of BCR, ABL1 and fusion
gene BCR-ABL1 using fluorescence in situ hybridization (FISH).

Materials and methods

Cell line

The K562 cell line was purchased from Deutsche Sammlung
von Mikroorganismen und Zellkulturen (DSMZ, Braunschweig,
Germany). Cells were grown in RPMI 1640 medium (Gibco,
Life Technologies) with 10% fetal bovine serum (Invitrogen)
at 37 8C in 5% CO2. K562 cells were passaged 5 times before
isolating genetic material with the use of Gentra Puregene
Cell Kit (QIAGEN) for NGS sequencing and FISH experiments.
The cell line was confirmed at each passage to be myco-
plasma free (PCR-based test).

Next-generation and Sanger sequencing

Mutational analysis of K562 cell line was performed using
SeqCap EZ Choice (Roche NimbleGen) custom enrichment.
Coding sequences of almost 1300 genes, selected on the
basis of literature review and major commercial cancer gene
panels (Supplementary Table I), were sequenced on Illumina
HiSeq 1500, as described previously [9, 10]. The mean depth
of coverage was 146�, 96.5% of our target was covered at least
10� and 93.3% of the target was covered at least 20�. Paired,
100 bp reads were trimmed, quality-filtered and aligned to
hg19 genome, followed by duplicate removal, variant calling
and variant annotation (GATK, SnpEff [11]).

All variants that did not pass quality check were
excluded from further analysis. Protein sequence-changing
variants, splicing regions variants and start or stop codon-
gain variants were then subject to filtering based on their
frequencies in 1000 genomes [12] and Exome Sequencing
Projects [Exome Variant Server, NHLBI GO Exome Sequencing
Project (ESP), Seattle, WA (URL:http://evs.gs.washington.edu/
EVS/)]. All variants more common than 1% in those databases
(also considering frequencies in European population) were
excluded. Variants more common than 10% in our internal
database (more than 2000 sequenced samples, representing
various diseases, including cancer, inherited genetic disorders
and normal tissue samples from affected individuals) were
also removed. This filtering step was applied to remove
frequent non-pathogenic variants unique to the Polish popu-
lation as well as sequencing artifacts (false positives) gener-
ated during sequencing process, which cannot be eliminated
using publicly available databases. The existence of selected
mutations/variants identified by the NGS was confirmed by
Sanger sequencing. Briefly, DNA of a particular coding region
surrounding the mutation was amplified in PCR reaction
using HotStarTaq Plus DNA Polymerase (QIAGEN). The PCR
primer sequences were as follows: TP53-F: tgttcacttgtgccct-
gact, TP53-R: ttaacccctcctcccagaga, ASXL1e12F: tgtatgccat-
gacccttaagct, ASXL1e12R: cctcaccaccatcaccactg. The PCR
products were purified using Agencourt AMPure XP (Beckman
Coulter), labeled with BigDye Terminator v.3.1 (Applied Bio-
systems) according to the manufacturer’s instructions and
sequenced by an external sequencing facility.

CADD [13], PolyPhen 2 [14], SIFT [15], fathmm [16],
MutationTaster [17] and CHASM [18, 19] methods were used
to predict functional consequences of identified variants.
CHASM was run on default parameters using acute myeloid
leukemia passenger mutation rate table.

Fluorescence in situ hybridization (FISH)

K562 cells were harvested according to standard cytogene-
tical procedures. After cell synchronization by colcemid for
20 min at 37 8C (10 mg/ml, Biosera, France), pelleted cells
underwent a hypotonic treatment using 0.075 M KCl solution
(Merck, Germany) for 20 min at 37 8C to swell the cells. The
cells were then fixed in cold Carnoy’s fixative solution
composed of 3:1 methanol and 100% acetic acid (Merck) and
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Table I – Newly identified mutations in K562 cells in genes commonly mutated in human malignancies (such as tumor
suppressors and oncogenes)

Gene name Mutation description
Nucleotide change/

AA change(NM number)

Mutation Disease related to
the gene

Protein function (GO terms)

BRCA1 c.1618A>G/p.Ile540Val
(NM_007297.3)

New Familial breast-ovarian
cancer, neoplastic
syndromes

Tumor suppressor, maintaining genomic
stability, RNA binding and ligase activity

ASXL1 c.1773C>A/p.Tyr591*
(NM_015338.5)

Described (in MDS
[34] and in AML
(1 patient) [35])

transcriptional regulator; retinoic acid
receptor binding activity

MLH1 c.523delA/p.Lys175fs
(NM_001258271.1)

New Lynch syndrome ATPase activity and post-replicative DNA
mismatch repair

BIRC6 c.10865C>T/p.Ala3622Val
(NM_016252.3)

New Ligase activity, the protein inhibits apoptosis
by facilitating the degradation of apoptotic
proteins by ubiquitination

AKT3 c.109G>T/p.Gly37*
(NM_001206729.1)

New Cell signaling regulator; transferase activity
and protein tyrosine kinase activity

TERT c.2663G>A/p.Arg888Gln
(NM_001193376.1)

Described (in
glioblastoma
(1 patient) [36])

The protein maintains telomere ends by
addition of the telomere repeat TTAGGG;
protein homodimerization activity and tRNA
binding

FANCC c.178G>A/p.Val60Ile
(NM_001243744.1)

New Hereditary neoplastic
syndromes

DNA repair protein that may operate in a
postreplication repair or a cell cycle
checkpoint function
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washed three times to ensure complete removal of cytoplas-
mic debris. The resulting suspension of metaphase and
interphase cells was applied to microscopic slides. FISH was
performed with the commercially available LSI BCR-ABL
Dual Color, Dual Fusion Translocation Probe (Vysis, Abbott
Molecular Inc., USA), dedicated to identification of BCR-
ABL1/ABL1-BCR fusion genes. The procedure was applied
according to the manufacturer’s protocol with modification
of denaturation and post hybridization washing time to
8 and 3 min, respectively. Results were analyzed using an
epifluorescence microscope Imager.Z2 (Carl Zeiss, Germany)
and documented using an ISIS (Metasystems, Germany)
Imaging System.
Table II – New mutations in other genes with potential biologi

Gene name Mutation description
Nucleotide change/

AA change (NM number)

Mutati

BAZ2B c.390T>G/p.Phe130Leu
(NM_013450.3)

New 

PCLO c.15253C>T/p.Arg5085*
(NM_033026.5)

Described (in co
[37])

WHSC1 c.1798C>T/p.Arg600*
(NM_001042424.2)

New 

PTPRN2 c.680C>T/p.Ala227Val
(NM_130842.2)

Described (in lun
adenocarcinoma

KAT6A c.5629C>T/p.Arg1877Cys
(NM_001099412.1)

Described (in dif
B-cell lymphom

CIC c.2782G>A/p.Ala928Thr
(NM_015125.3)

New 

PTPRZ1 c.1406G>A/p.Arg469His
(NM_001206839.1)

Described (in na
T-cell lymphom

KRTAP9-9 c.482C>A/p.Ser161Tyr
(NM_030975.2)

New 
Results

Targeted enrichment and deep sequencing revealed 88 var-
iants with potential biological significance (listed in Supple-
mentary Table II). First, we selected mutations in genes
involved in hematological malignancies and in tumor sup-
pressors and oncogenes (shown in Table I). Additionally, we
present new mutations in other genes implicated in human
diseases, which have been detected in K562 cells (Table II).
Literature and databases review followed by manual variant
inspection allowed for prioritizing several of them as bio-
logically significant mutations. Noteworthy, according to
cal effects in K562 cells

on Protein function (GO terms)

Potential role in transcriptional activation as it is a
component of chromatin remodeling complex

lon cancer Calcium ion binding and transporter activity;
variations in this gene have been associated with
bipolar disorder and major depressive disorder
Sequence-specific DNA binding and histone-lysine
N-methyltransferase activity

g
 [38])

Phosphatase activity and transmembrane receptor
protein tyrosine phosphatase activity

fuse large
a [39])

Histone acetyltransferase, chromatin binding and
transcription coactivator activity
Chromatin binding activity

tural killer/
a [40])

Phosphatase activity; the protein may be involved
in the regulation of specific developmental
processes in the central nervous system
Keratin-associated protein which forms a matrix of
keratin intermediate filaments which contribute to
the structure of hair fibers
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American Type Culture Collection (ATCC) characteristics of
K562 cell line, described in Leukemia Cell Line Panel
documentation, it harbors homozygous mutations in TP53
(c.406_407insC, p.Q136fs*13) and CDKN2A (c.1_471del471,
p.0?) genes [https://www.lgcstandards-atcc.org/�/media/
BF7C43065F5B49C8A93E71C4F830529B.ashx]. We have identi-
fied the same c.406_407insC, p.Q136fs*13 mutation in TP53
in our K562 cell line. However, we have not identified the
CDKN2A variant in our data because we did not get CDKN2A
sequence, most probably due to deletion of the whole gene
in our K562 cells. We have found that only few of our newly
identified variants were reported in COSMIC or CCLE (Cancer
Cell Line Encyclopedia [20]) databases, but with no literature
annotation. Thus we decided to mark such variants here as
new ones. Among all variants listed in Table I, we prior-
itized six genes on the basis of our analysis of mutations’
significance. Mutations in these genes were identified as
significant/pathogenic by at least 3 out of 6 used predictors.
The top scoring mutations include BRCA1 (missense muta-
tion), TP53 (frameshift mutation, as mentioned above this
mutation has been described in K562 cell line from ATCC),
ASXL1 (stop gain variant), MLH1 (frameshift mutation), BIRC6
(missense variant), AKT3 (stop gain mutation) as shown in
Fig. 1 – Newly identified and known mutations in K562 cell line. M
IGV printscreens. Panels stay for known variant in ASXL1 (A) and
AKT3 (F) genes
Table I and Fig. 1. We have additionally confirmed two of
these mutations by classical Sanger sequencing (Supple-
mentary Fig. 1).

BRCA1, widely known as a gene which (in mutated
form) is associated with familial breast cancer, encodes one
of the major DNA repair nuclear protein that plays a role
in homologous recombination and in maintaining genomic
stability [21]. TP53 encodes a tumor suppressor protein con-
taining transcriptional activation, DNA binding, and oligo-
merization domains [22]. The encoded protein responds to
diverse cellular stresses to regulate expression of target genes,
thereby inducing cell cycle arrest, apoptosis, senescence, DNA
repair or changes in metabolism [22]. Mutations in this gene
are associated with a variety of human cancers, including
hereditary cancers and Li-Fraumeni syndrome [23]. ASXL1
encodes the protein which functions as a ligand-dependent
co-activator for retinoic acid receptor cooperating with
nuclear receptor coactivator 1. Mutations in ASXL1 are
common in myelodysplastic syndromes, acute myeloid
leukemia and chronic myelomonocytic leukemia [24]. MLH1
was identified as a locus frequently mutated in hereditary
non-polyposis colon cancer (HNPCC). The protein is one of
key mismatch repair proteins that works coordinately in
utation and counted allele frequencies are indicated on the
 TP53 (D), and new variants in BRCA1 (B), MLH1 (C), BIRC6 (E),

https://www.lgcstandards-atcc.org/~/media/BF7C43065F5B49C8A93E71C4F830529B.ashx
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Fig. 2 – Multiplication of the BCR and ABL1 gene copies and the high amplification of the BCR-ABL1 fusion gene in the K562
interphase cells. The result of FISH analysis with BCR (green) and ABL1 (red) translocation probes on the interphase K562
cells. An accumulations of the fusion genes BCR-ABL1/ABL1-BCR are presented in yellow. Nuclei were stained with
Vectrashield mounting medium with DAPI (blue)
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sequential steps to initiate repair of DNA mismatches in
humans [25]. Defects in MLH1 are associated with the
microsatellite instability (MSI) observed in HNPCC [26]. BIRC6
(Baculoviral IAP repeat-containing 6) belongs to family of
endogenous inhibitors of apoptosis. Mutations in BIRC6 are
associated with leukemia, melanoma, breast cancer, lung
cancer, and other cancers [27]. BIRC6 has been shown to
interact with KIF23 [27] which is a plus-end directed motor
protein expressed in mitosis, involved in the formation of
the cleavage furrow (pinch) in late anaphase and in cytokin-
esis [28–30]. AKT3 is a serine/threonine kinase involved in
a wide variety of biological processes including cell prolifera-
tion, differentiation, apoptosis and/or tumorigenesis. AKT
kinases are known to be regulators of cell signaling in
response to insulin and growth factors [31]. All of the
proteins described above are related to tumorigenesis.

According to the DSMZ webpage, the cytogenetic character-
istics of K562 cell line is given as follows: “human hypotriploid
karyotype – 61–68<3n>XX, �X, �3, +7, �13, �18, +3mar, del(9)
(p11/13), der(14)t(14;?)(p11;?), der(17)t(17;?)(p11/13;?), der(?18)t
(15;?18)(q21;?q12), del(X)(p22) – two markers appear from FISH
to have arisen from Ph”.

We analyzed the interphase K562 cells by FISH using
BCR-ABL1 translocation probes and observed a slightly dif-
ferent pattern of cytogenetic abnormalities in our K562 cell
line (purchased from DSMZ). Our analysis of the K562
metaphase and interphase cells shows multiplication of the
BCR and ABL1 gene copies, as well as the amplification of
the BCR-ABL1 fusion gene, which is consistent with the
previously published results describing 8- to 24-fold ampli-
fication of the BCR-ABL1 fusion gene [32, 33]. However the
most relevant alteration on the cytogenetic level is the
presence of at least four additional copies of Ph chromo-
somes (Fig. 2).
Discussion

It is widely accepted that cell lines accumulate with time
cytogenetic abnormalities. Our results confirm the existence
of major chromosomal aberrations in K562 cell line but we
describe new mutations in several oncogenes other than
BCR-ABL1 fusion gene. This confirms a high level of genomic
instability in the blastic phase of CML represented by the
K562 cell line. Some of the mutations identified in our study
may have profound impact on the DNA repair mechanisms
and genomic instability of K562 cells. Mutations in MLH1
gene are frequent in Lynch syndrome and are associated
with mismatch repair defect and microsatellite instability
[23, 24]. BRCA1 mutations, on the other hand, may affect
another crucial element of DNA repair, homologous recom-
bination, which is involved in the repair of DNA double
strand breaks. The awareness of the mutations and karyo-
type aberrations of the human leukemia cell line K562 is
important for further studies of the normal and pathological
hematopoiesis or acquisition of the drug resistance as they
could have an impact on the observed results. Our results
point at the high level of genomic instability in the blastic
phase of CML represented by the K562 cell line. The data
presented here can further help researchers and hematolo-
gists who employ K562 cell line in their experimental
procedures by broadening up their knowledge of genomic
defects present in this model cell line.
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