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The role of Th17 cells in tumor immunity
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a b s t r a c t

CD4+ T helper (Th) cells play an important role in modulating immune responses. Th17

cells are a newly established Th subpopulation. Th17 cells differentiate in the presence

of TGF-b and IL-6 in mice or IL-1b and IL-6 in humans, depending on the transcription

factor RORgt. IL-23 stabilizes the Th17 cells phenotype and helps Th17 cells acquire

effector functions. Th17 secretes IL-17, IL-21, and IL-22, which play significant role in the

immune response against viruses, extracellular bacteria and fungi, as well as in the

pathogenesis of inflammatory diseases. The systemic and local activity of IL-17 and Th17

seems to be an important part of development of autoimmune reaction. Th17 cell subpo-

pulation has been described in many types of cancer, including gastric cancer, mela-

noma, breast cancer, and ovarian cancer, but it remains unclear whether Th17 cells

promote or inhibit tumor progression and the mechanism of their involvement in tumor

immunity is unknown.

This review summarizes the current knowledge on the role of Th17 cells in tumor

immunity.
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Introduction

Since 1989 when Mosmann and Coffman showed that
murine CD4+ T cells differentiate into two subsets of
reciprocal patterns of cytokine secretion and function,
defined as CD4+ T helper type 1 (Th1) and Th2, a great
progress in understanding of Th cells and certain effector
cytokines utilized by Th cells has been observed. This classic
division was changed by the discovery of a new CD4+ helper
T cells population which is characterized by the high
expression of IL-17, named CD4+ T helper type 17 (Th17).
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More recently, the new Th subsets such as Th9 and Th22
cells, which play roles in the modulation of host immune
responses, were discovered [1–3].

Th17 cell differentiation

After the discovery of Th17 cells, many studies have been
focused on the mechanisms that lead to the differentiation
of CD4+ cells. At least several cytokines and their combina-
tions, the presence of which determines the formation and
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maintenance of Th17 phenotype in animal models and in
humans, are already known.

In mice, transforming growth factor-b (TGF-b) and IL-6
are crucial for Th17 differentiation. Notably naïve T cells
stimulated by TGF-b only, without the involvement of IL-6,
are developing in the direction of regulatory T cells by the
activation of the transcription factor FOXP3. Therefore, IL-6
is an essential factor for the differentiation of naïve T cells
into Th17 as it increases the expression of IL-23R and
subsequently inhibits the activity of FOXP3. IL-23 is not
needed for the early development of mice Th17 cells, but
seems to be involved in the expansion and survival of the
Th17 cell subpopulation [4–6].

In humans, Th17 cells differentiate under similar condi-
tions, but with little more cytokines in a microenvironment.
In vitro studies on CD4+ cells taken from the cord blood
have shown that an optimum environment for this process
requires the presence of IL-1b, IL-6, IL-21, and IL-23. The
formation of human Th17 cells in comparison with the
murine cells depends to a greater extent on the presence of
IL-23 as well as the pro-inflammatory cytokines such as IL-
1b and IL-21 [7, 8]. IL-23 is produced by activated monocytes,
macrophages, dendritic cells and endothelial cells. Binding
to its specific receptor activates JAK/STAT T cell pathway.
IL-23 might be involved in the upregulation of IL-17 produc-
tion. It also stabilizes the Th17 cell phenotype and helps
Th17 cells acquire effector functions [8, 9]. The role of TGF-b
in the development of Th17 cells from naïve human T cells
has been somewhat controversial. What is more, TGF-b
appears to determine Th17 cells differentiation in a dose-
dependent manner. Lower concentrations of TGF-b in the
presence of IL-6 induce Th17 differentiation, the production
of IL-21 and the upregulation of IL-23R, while higher doses
of this cytokine inhibit IL-23R expression and promote the
Treg phenotype by activation of the transcription factor
Fig. 1 – Differentiation and function of Th17 cells in mice
and human
Ryc. 1 – Różnicowanie i funkcje komórek Th17 u myszy i ludzi
FOXP3 [8, 10] (Fig. 1). In addition the lectin receptor CD161,
the human homologue of murine NK1.1, has been reported
to be expressed in all human Th17 cells in the peripheral
blood and inflamed tissues. Moreover, in humans the
chemokine receptor CCR6 is involved in the process of
differentiation of Th17 cell phenotype [11, 12].

The differentiation of Th17 cells requires the expression
of the retinoic acid receptor-related orphan receptor-gt
(RORgt), which belongs to the retinoic acid-related nuclear
hormone receptor family. The induction of RORgt depends
on signal transducer and an activator of transcription
3 (STAT-3), and the overexpression of RORgt regulates IL-17
production and Th17 cells differentiation. In human, the
overexpression of RORC2 (the human ortholog of RORgt) in
native T cells induces the expression of IL-17A, IL-17F, IL-26
and CCR6 [7, 13]. STAT-3 regulates Th17 cell lineage devel-
opment in cooperation with IL-6, IL-21 and IL-23. STAT-3
affects RORgt expression and binds to IL-17A, IL-17F and IL-
21 promoters [14]. The aryl hydrocarbon receptor (AHR) is
a ligand-dependent transcription factor, which can induce
Th17 differentiation, presumably through the inhibition of
STAT1 and STAT5, which negatively regulates Th17 devel-
opment [15, 16]. Recent data have shown that interferon
regulatory factor 4 (IRF4) is also important in the differentia-
tion of Th17 cells through the IL-6 and TGF-b pathway or
through the IL-21-mediated pathway [17].

Function of Th17 cells

Th17 cells secrete a number of cytokines among which the
most important is IL-17. IL-17 is the member of the IL-17
family, which consists of six cytokines: IL-17A, IL-17B, IL-
17C, IL-17D, IL-17E and IL-17F. Th17 cells secrete large
quantities of IL-17A in humans, the gene encoding IL-17 is
localized on chromosome 6. IL-17 has pleiotropic effect on
the tissue cells and several immune cells. IL-17 stimulates
the production of inflammatory cytokines, such as IL-6,
TNF-a, IL-1b, chemokines (CXCL1, CXCL3, CXCL5, CXCL6),
and several growth factors including granulocyte colony-
stimulating factor (G-CSF), granulocyte–macrophage colony-
stimulating factor (GM-CSF) and vascular endothelial growth
factor (VEGF) from epithelial cells and fibroblast. This
cytokine plays an important role in combating extracellular
pathogens (bacteria and fungi) by inducing neutrophil
maturation and chemotaxis. Furthermore, IL-17 increases
the expression of intracellular adhesion molecule 1 (ICAM1)
on epithelial cells and induces the secretion of matrix
metalloproteinases (MMPs) that are involved in tissue remo-
deling and damage. IL17A signaling occurs through
a receptor IL17RA, which is expressed in multiple tissues,
such as hematopoietic tissue, skin, and lung [18, 19]. Th17
cell also produces other effector molecules, such as IL-21,
IL-22, IL-26, IL-6 and CCL20.

IL-22 belongs to IL-10 family of cytokines and is produced
by terminally differentiated Th17 cells and activated by
T cells. IL-22 has a protective effect on epithelial cells. This
cytokine stimulates defence, regeneration and healing in
tissue through the induction of antimicrobial agents and
proteins involved in epithelial cell differentiation and cell
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mobility. IL-22 induces antimicrobial proteins (S100 pro-
teins), b-defensins, acute-phase proteins, inflammatory
cytokines and chemokines in keratinocytes [20, 21].

Il-21 is a member of the IL-2 family and mediates its
functions via the IL-21 receptor (IL-21R), which is expressed
on B cells, T cells and natural killer (NK) cells and non-
immune cells such as epithelial cells and fibroblasts. IL-21
stimulates the proliferation and activation of CD4+ and CD8+
cells and the expansion and activation of NK cells [22, 23]. In
addition, IL-21 regulates the maturation and differentiation of
B lymphocytes. It can also promote antibody production and
antibody class switching by the induction of involved tran-
scription factor (Blip-1, Bcl-6) [24, 25]. This cytokine can also
induce the secretion of chemokines and the production of
MMP in non-immune cells, such as epithelial cells and
fibroblasts [26]. IL-21 also induces the expression of the IL-23R
[27].

IL-26 is a member of the IL-10 family, which is produced
by the activated memory T cells and induces the expression
of proinflammatory cytokines, such as TNF-a and IL-8, and
inhibits cell proliferation [28]. CCL20 is a ligand for CCR6
and it have an antimicrobial and chemoattractive activities
[19].

The role of Th17 in tumor immunity

Th17 cell subpopulation has been described in many types
of cancers, including gastric cancer, melanoma, breast
cancer, and ovarian cancer, but it is not clear whether Th17
cells promote or inhibit tumor progression and the mechan-
ism of their involvement in tumor immunity is unknown.
The development of cancer is affected by many factors. It
depends on the production of profile of pro-inflammatory
and angiogenic cytokines, antitumor immunity and immu-
nogenicity of the tumor [29–31].

Tumor promotion by Th17 cells and IL-17

Potential mechanisms responsible for the promotion of tumor
growth activity by IL-17 and Th17 cells involve angiogenesis. IL-
17 influences the proliferation of tumor cells by stimulation of
new vessels formation due to its pro-inflammatory as well as
angiogenic activity. This induces VEGF, which markedly pro-
motes inflammatory and tumor angiogenesis [32]. Moreover,
VEGF stimulates the production of TGF-b, which seems to
enhance cancer growth and metastasis by stimulating angiogen-
esis [33]. IL-17 also induces IL-6 and enhances the expression of
ICAM-1 in fibroblasts. These molecules play an important role in
angiogenesis and tumor invasion. IL-6 induces activation of the
oncogenic signal STAT3, resulting in prosurvival and proangioge-
netic genes upregulation [34, 35]. IL-17 seems to induce the
production of IL-8. It promotes angiogenic response in endothe-
lial cells, increases proliferation and survival of endothelial and
tumor cells, and infiltration of neutrophils on the site of the
tumor. Expression of IL-8 correlates with angiogenesis and
metastasis [35, 36]. IL-17 stimulates the secretion of IL-1b and
TNF-a by macrophages. These cytokines activate neutrophils to
secrete specific chemokines that recruit them to the site of
inflammation. In addition, IL-17 increases the production of
angiogenic chemokines such as CXCL1, CXCL5, CXCL6, and
CXCL8 in endothelial cells and cancer cells. These chemokines
can induce proliferation and chemotaxis of vascular endothelial
cells, which promote tumor growth [37, 38]. IL-23 may up-
regulate IL-17 and matrix metalloprotease 9 (MMP-9) to stimulate
angiogenesis and reduce the number of CD8+ T cells in the
tumor microenvironment. It has also been demonstrated that
tumor cells and tumor-derived fibroblasts secrete monocyte
chemotactic protein 1 (MCP-1) mediating the recruitment of
Th17 cells [30]. Protumor activity mediated by Th17 and IL-17
has been observed both in mouse tumor models and in human
cancer patients.

Tartour et al. [39] injected nude mice with human
cervical tumor cells transfected with human cDNA encoding
IL-17 and found that they grew more quickly than parental
tumors. Numasaki et al. [38] demonstrated that human non-
small cell lung cancer transfected with human IL-17 grew
faster in severe combined immunodeficiency (SCID) mice
than did control non-small cell lung cancer cells.

In the study of hepatocellular carcinoma significantly
higher levels of Th17 cells in tumor in comparison to non-
tumor tissue have been described. The levels of Th17 cells are
positively correlated with microvessel density in the tumor
[40]. Alexandrakis et al. [41] in patients with multiple mye-
loma found correlation between high levels of IL-17 in serum
and concentration of proangiogenic cytokines, density of
blood vessels and clinical stage of the disease. In the study of
gastric cancer the frequency of Th17 cells was significantly
increased when compared to healthy donors. The percentage
of Th17 cells in stage III–IV was higher than that in stage I–II
patients [29]. Tosolini and coworkers [42] reported that high
expression of Th17 gene in colorectal tumor was associated
with poor prognosis. In the study by Sfanos et al. [43] it was
demonstrated that Th17 cells infiltrating the tumor correlated
inversely with the Gleason score in prostate cancer.

Wang et al. [44] showed significantly higher percentage
of Th17 cells in both colorectal adenoma (CRA) and color-
ectal carcinoma (CRC) compared to that in healthy controls.
They observed that the percentage of Th17 cells was
decreased in advanced stages of CRAs and CRCs in compar-
ison with early stage of the diseases. Also, the concentra-
tions of IL-17A and IL-23 were higher in CRA and CRC
patients when compared to that in healthy controls.

Wu et al. [45] reported significantly higher frequency of
Th17 cells in untreated acute myeloid leukemia (AML)
patients compared to that in healthy controls. They also
found increased concentrations of IL-6 and TGF-b1 in AML
patients than in controls; the IL-6 concentrations showed
a positive correlation with frequencies of Th17 cells.
Furthermore, the frequencies of Th17 cells were significantly
reduced in patients with complete remission (CR) compared
to that in the same patients before treatment, and in
comparison to non-CR patients who did not present reduced
frequencies after therapy.

In the study of chronic lymphocytic leukemia Jadidi-
Niaraghet al. [46] showed lower number of Th17 cells in
progressive compared to indolent patients and healthy
controls. Additionally, Th17 cells were decreased in patients
in II-IV Rai stages when compared to that in those in early



Table I – The role of Th17 cells and IL-17 in tumor immunity
Tabela I – Znaczenie komórek Th17 i IL-17 w odporności przeciwnowotworowej

Malignancy type Number of
patients

Expression of
Th17 or IL-17

level

Biological
significance

Clinical
significance

References

Hepatocellular carcinoma 178 " Higher Th17 numbers correlated
with higher microvessel density

Higher Th17 numbers correlated
with shorter overall survival

40

Multiple myeloma 40 " Increasing serum levels of IL-17
positively correlated with
angiogenetic factor such as TNF,
VEGF

Increasing serum levels of IL-17
correlated with advancing
disease stage

41

Acute myeloid leukemia 42 " Increasing TGF-b, IL-6, IL-17
concentrations in plasma, IL-6
and IL-17 concentrations showed
a positive correlation with the
frequencies of Th17 cells

Not assessed 45

Colorectal cancer 231 "Th17 gene Not assessed High expression of the Th17
cluster genes correlated with
shorter overall survival

42

Ovarian cancer 201 " Higher Th17 numbers positively
correlated with the percentage
of effector CD8+ lymphocytes

Higher levels of IL-17 correlated
with longer overall survival

55

Chronic lymphocytic
leukemia

66 " Not assessed Higher circulating Th17 levels
correlated with longer overall
survival

46

Breast cancer 27 # Lower number of Th17 cells
correlated with higher
numbers of Treg

Not assessed 54
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stages 0–I. They observed a significant decrease of Th17 cells
in unmutated IGHV compared to mutated samples. The
mean fluorescence intensity (MFI) of IL-17 was lower in
progressive as compared to indolent patients and normal
subjects. Earlier we found higher frequency of Th17 cells in
patients with CLL, even in patients in early stage of the
disease. We reported that the expression of Th17 did not
correlate with disease stage and prognostic factors [54].
Hus et al. [55] observed higher percentages of Th17 cells
and IL-17A plasma levels in patients in early clinical stages
of CLL compared to those in advanced Rai stages and
healthy controls. The frequencies of Th17 cells and IL-17A
were lower in patients with adverse prognostic factors.
Furthermore, they found that IL-17A plasma levels were
lower in patients who required therapy compared to that
in patients who were not treated. Biological and clinical
effects of Th17 cells and IL-17 in cancer patients are
summarized in Table I.

The anti-tumor function of Th17 cells and IL-17

The antitumor function of Th17 cells reflects the influence
of IL-17 on many cell types. IL-17 stimulates the maturation
of dendritic cells by increasing the surface expression of
MHC class II molecules. The presentation of tumor antigens
to CD8+cells leads to their differentiation in cytotoxic
T lymphocytes. IL-17 stimulates the production of IL-12 in
macrophages, leading to the activation of cytotoxic lympho-
cytes. It is believed that Th17 cells indirectly affect the anti-
tumor immunity by recruiting cytotoxic lymphocytes, NK
cells, macrophages, neutrophils and dendritic cells [47, 48].
Hirahara et al. [49] have transfected human IL-17 gene
into hamster ovarian cancer cells and shown a significantly
lower metastatic potential of tumor cells by direct modula-
tion of invasiveness and metastasis as well as by increasing
the activity of NK cells. In a murine model Muranski et al.
[50] have obtained eradication of advanced melanoma using
tumor-specific Th17 lymphocytes generated in vitro.

Kryczek et al. [51] have shown a positive correlation
between the percentage of Th17 tumor infiltrating cells and
the percentage of effector CD8+ lymphocytes as well as
negative correlation between the percentage of Th17 cells
and regulatory T cells in patients with advanced ovarian
carcinoma.

Horlock et al. [52] in their study have demonstrated
significantly lower number of Th17 cells in peripheral blood
in HER-positive breast cancer patients when compared to
HER-negative patients and healthy controls. Furthermore,
the percentage of regulatory T cells was significantly higher
in breast cancer patients compared to healthy volunteers. In
addition, Jain et al. [53] have reported significantly higher
absolute number of blood Th17 cells in patients with
chronic lymphocytic leukemia compared to healthy controls.
They have also demonstrated positive correlation between
circulating Th17 cells number and survival of CLL patients.
Patients with high Th17 cells number had longer median
overall survival than patients with low Th17 cells number.

In summary, the presented data suggest the importance
of Th17 cells in tumor immunity, but their impact on the
development of cancer remains undefined. Characterization
of the functional roles of Th17 cells, as well as identification
of the mechanisms underlying Th17 cell heterogeneity in
individual tumors or during tumor development, is urgently
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required for the development of effective and specific
antitumor immunotherapies.
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