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a b s t r a c t

Considerable advances have been made in treatment of acute lymphoblastic leukemia

(ALL) with an overall survival rate of 85% in children, and with a great improvement in

adults. Despite this improvements and the accessibility of hematopoietic stem cell trans-

plantation, relapsed ALL remains a leading cause of childhood mortality emphasizing the

need of new approaches on therapy. Understanding of the pathobiology and genetic

alteration of ALL has been enhanced by developing molecular technologies including

microarray analysis and genome sequencing. These studies have helped identifying

mutations in key signaling pathways and revolutionized the treatment of ALL by drugs

which specifically target the genetic defects of leukemia cells, such as tyrosine kinase

inhibitors. In this paper, we review the clinically important Genetic Alterations in ALL.
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Introduction

Acute lymphoblastic leukemia (ALL) is the most common
cancer in children, with top prevalence in the ages of 2–5
years and the important cause of mortality from hematolo-
gical cancers in adults with second peak after the age of 50
years [1, 2]. Totally children with B linage ALL have
a favorable clinical outcome in comparison with those
suffering from T linage ALL [3]. Considerable advances have
been made in treatment of ALL with an overall survival rate
of 85% in children [2]. About adults, the outcome is being
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improved but it remains poor compared to children with
a long- term survival of only 45% [1]. The reasons for these
differences are multifactorial and not fully understood, but
with increasing age, the frequency of genetic alterations
with favorable outcome decreases and alteration with poor
outcome like BCR-ABL are more common [2]. Although, all
chromosomal translocations is occurred in any age and in
both children and adults but there is a significant difference
in the incidence of approximately most subgroups based on
age (Fig. 1) [4]. For instance ETV6- Ranx1 and hyperdiploidy
dominate in young children, with low incidence of this
rearrangement in adults (3%,), whereas the incidence of
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Fig. 1 – Distribution of ALL subtypes according to age groups. The occurrence of ALL. Subtypes varies between age groups.
Abbreviations: ALL, acute lymphoblastic leukemia; B-other, B-cell acute lymphoblastic leukemia with other subtypes; CRLF2-
r, CRLF-2-rearranged; MLLr, MLL-rearranged; Ph-like, Philadelphia chromosome-like [68, 69]
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BCR-AB1 Philadelphia translocation increases considerably
with age, 3% in children versus 25% in adult [4]. This
biological difference highly likely affects outcome and over-
all survival in adults which is significantly inferior to
children.

Primary genetic subtypes of B-cell precursor ALL

The fundamental mechanisms of leukemia transformation
are the same and contain, abnormal expression of proto-
ancogen and chromosomal translocation that finally create
fusion genes encoding active kinases and transformed
transcription factors. Such abnormalities cause ALL by
enforcing in lymphoid progenitor cells an unrestricted
Table I – Clinically relevant subgroups of ALL

Chromosomal translocations/gene fusions Prevalen

High hyperdiploidy with more than 50 chromosomes �30 

Hypodiploidy with less than 44 chromosomes 2–3 

t(9;22)(q34;q11.2) translocation encoding BCR–ABL1 fusion 2–4 

t(12;21)(p13;q22) translocation encoding ETV6–RUNX1 fusion 15–25 

t(4;11)(q21;q23) translocation encoding MLL–AF4 fusion 1–2 

t(1;19)(q23;p13) translocation encoding TCF3–PBX1 fusion 2–6 

Ph-like ALL 10–15 
ability for self-renewal, which typically followed by lacking
of control on normal proliferation, a block in cell differentia-
tion and almost resistance to normal apoptosis [5]. The
gross chromosomal alterations are hallmark of ALL, and the
occurrence of each alteration varies with age (Tab. I). The
most common rearrangements observed in B-lineage ALL
are the t(12;21) (p13;q22) rearrangement resulting in the
expression of TEL-AML1 fusion, the t(9;22) (q34;q11.2) “Phila-
delphia” chromosome resulting in the expression of BCR–
ABL1 fusion, the t(1;19) (q23;p13) translocation resulting in
the expression of TCF3–PBX1 fusion; and t(4;11) (q21;q23)
translocation encoding MLL–AF4 fusion. Identification of
these rearrangements is important in diagnosis and risk
stratification of patients with ALL. Two main genetic sub-
types TEL-AML1 (ETV6-RUNX1) positive and hyperdiploidy
ce (%) Relative prognosis

Excellent
Poor
Poor/ improved with imatinib or other tyrosine kinase
inhibitor
Excellent
Poor
Excellent
Multiple cytokine receptor and kinase-activating lesions;
amenable to tyrosine-kinase inhibitor therapy
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with greater than 50 chromosome compromise the most
common abnormalities (approximately 50%) in pediatric
precursor B-ALL cases. Both of them have favorable outcome
and are classified in good risk cytogenetic abnormalities
most likely due to sensitivity of TEL-AML1 to L-asparaginase
and hyperdiploidy to L-asparaginase and antimetabolites
such as 6-mercaptopurine and methotrexate [3, 6, 7]. While
in adults, the most common genetic abnormalities is Phila-
delphia chromosome translocation t (9:22) BCR-ABL1, which
encodes the activated BCR-ABL1 tyrosine kinase. It is
a reciprocal translocation between chromosome 9 and 22
which fuses the ABL1 oncogene on chromosome 9, to
a breakpoint cluster region (BCR) from chromosome 22 and
is related to a high risk of relapse. Other abnormalities with
high risk of relapse and poor outcome are rearrangement of
mixed-linage leukemia genes (MLL) in both groups.

The protein with histone methyl transference activity,
which is encoded by MLL gene is essential for hematopoietic
regulation of HOX-A and MEISI gene expression. The most
common gene rearrangements include t(4;11) encoding MLL-
AFF1, t(9;11) encoding MLL-MLLT3, t(11;19) encoding MLL-ENL
Table II – recently identified genetic alteration in ALL

Gene Alteration Frequenc

CRLF2 Rearrangement (as
IGH@-CRLF2 or P2RY8-
CRLF2)

5–15% pediatric an
ALL, and >50% Do
syndrome (DS) ALL
of Ph-like ALL

IKZF1 Focal deletions or
sequence mutations

15% of all pediatric
with B-ALL: 70–80%
ABL1+ patients wit
30% OF high-risk B
like B-ALL

PAX5 Deletions,
translocations,
sequence mutations

31% of B-ALL 

JAK1/2 Pseudokinase and
kinase domain
mutations

Up to 10% of high-
ABL1-like B-ALL; 1
DS ALL

Kinase rearrangements
and mutation

Rearrangements of
ABL1, ABL2, CSF1R,
EPOR, PDGFRB;

10% childhood B-A
30% adult ALL; ass
with Ph-like gene e
profile

IL7R Up to 7% of B and T-
ALL

Sequence mutation

NT5C2 Sequence mutations 19% of relapse T ce
3% of relapse
B-precursor ALL

TP53 Deletions and
sequence mutations

Present in 12.4% of
cell ALL and of 6.4%
cell AL

CREBBP Deletions and
sequence mutations

19% of relapsed B 
and t(10;11) encoding MLL-MLLT10,between mentioned rear-
rangements the t(4;11) translocation is the most common
with 50% incidence. In general, MLL rearrangements are
related with adverse outcome highly likely due to cellular
drug resistance [8]. Of note, “BCR-ABL1-like” or “Ph.-like” ALL,
is a newly described subtype of high risk ALL that is related
with poor outcome, and increased in frequency with age
(which will be described in more details in the following
section) [9].

Submicroscopic genetic aberration in ALL

Primary oncogenic events such as chromosomal rearran-
gements are not sufficient to cause leukemia by them-
selves and secondary mutations should accompany this
chromosomal translocation. Advances in cytogenetic uti-
lizing array based technology have revealed additional
submicroscopic abnormalities in genes that are involved
in normal hematopoiesis, apoptosis and tumor suppres-
sion (Tab. II).
y Pathophysiologic and clinical
consequences of alteration
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Cytokine receptor like factor 2 rearrangements in
ALL (CRLF2)

CRLF2 rearrangement has been detected in approximately
5–15% of childhood and adult B-cell precursor and also
they are more common in Down syndrome ALL (in 50% of
cases) [10–12]. CRLF2 encodes cytokine receptor like factor
2 (also known thymic stromal lymphopoitin receptor/
TSLPR) which forms a heterodimeric receptor for thymic
stromal lymphopoitin (TSLP) with interleukin-7 receptor-
alpha (IL7R) [13]. Two alterations have been typically
recognized in CRLF2; a chromosomal translocation which
juxtaposes CRLF2 to the immunoglobin heavy chain locus
(IGHG) or more commonly a focal deletion upstream of
CRLF2 resulting in fusion of CRLF2 gene with G protein-
coupled puringic receptor P2Y8 gene (P2RY8) [14]. While the
P2RY8-CRLF2 alteration is more common in younger pedia-
tric ALL, but IGH- CRLF2 is frequently detected in adults
with ALL [12, 15]. Both of the rearrangements result in
overexpression of CRLF2 on the cell surface of leukemia
lymphoblast which can be detected by flowcytometry [12].
Less commonly alteration of CRLF2 is a point mutation at
codon 232 which replace a phenylalanine with a cysteine.
Various groups have tried to describe prognostic value of
CRLF2 alteration and also its association with treatment
outcome in patients with ALL. It has been shown that
Patients with a high CRLF2 expression had a high rates of
relapse (31% � 8% vs 11% � 1%, P = 0.006) and a poor event
free survival (EFS) (61% � 8% vs 83% � 2%, P = 0.003) com-
pared to Patients with a low CRLF2 expression [16]. In
a cohort study, it was shown that ALL Patients with
overexpression of CRLF2 have a very poor outcome [17].
Another cohort study of pediatric ALL reported that there
is a high occurrence of CRLF2 genomic lesions in DS-ALL
(in more than 50% of cases) [11]. Additionally, shRNA
knockdown of CRLF2 in B-ALL cell lines only partly inhib-
ited cell growth [15], which suggest that CRLF2 overexpres-
sion alone is not sufficient to transform cells and other
cooperating mutations and covariates may be involved.
The best described of this covariates that accompany
CRLF2 alteration are involving janus kinase1 and januse
kinase 2 mutations, IKZF1 mutations and DS-ALL. Half of
patients with CRLF2 overexpression also harbor JAK muta-
tions (JAK 1 and JAK 2) [17]. Mutation in the pseudokinase
domain of JAK2 at R683 is the most common [18]. CRLF2
rearrangement together with JAK2 mutants resulted in
constitutive JAK-STAT activation and cytokine-independent
cell growth [11]. It was revealed that in 41 CRLF2-rear-
ranged DS-ALL patients, 34% of them also had JAK2
mutations [11]. In line, in study of 26 high-risk pediatric B-
ALL patients with CRLF2 overexpression, 69% of them had
JAK mutations [19]. CRLF2 rearrangements also have
revealed to be associated with gain of function mutations
of IL7R in patients with ALL [20, 21]. The mutant IL-7R
proteins forms a functional receptor with CRLF2 for TSLP
and resulting in cytokine-independent growth of progeni-
tor lymphoid Cells [20]. Importantly, CRLF2 rearrangements
are surrogates of poor outcome and can be used in risk
stratification and targeting therapy.
IKZF1 gene deletions

During recent years, between recurring genetic alterations
which cooperate in leukemogenesis, the lymphoid transcrip-
tion factor gene IKZF1 has been found to have definite
prognostic impact in B-ALL [22, 23]. IKZF1, which encodes
IKAROS protein member of family of zinc finger, is required
for the development of all lymphoid lineages [24] and has
been established as one of the most clinically relevant
tumor suppressors in high-risk acute lymphoblastic leuke-
mia. IKZF1 deletions usually result in the expression of
dominant-negative IKAROS variants (e.g., IK6) that are
characterized by loss of N-terminal zinc fingers (which
mediate DNA binding) and result in the loss of the tumor
suppressor function attributed to wild-type IKZF1 [25, 26].
The incidence of IKZF1 deletions in children with Philadel-
phia chromosome-positive (Ph+) ALL is approximately 70%,
whereas its incidence in children with Philadelphia chromo-
some–negative (Ph-) ALL is 10–15%, and is related with an
increased risk of relapse and decreased overall survival in
both groups [24, 27–30].

Intrachromosomal amplifications of chromosome
21 (iAMP21) in ALL

Intrachromosomal amplification of chromosome 21 (iAMP21)
is an uncommon high-risk Chromosomal abnormality that
occur in approximately 2–5% of pediatric patients with B-cell
precursor ALL [31–33]. Fluorescence in situ hybridization
(FISH), using RUNX1, provides the only reliable detection
method (five or more RUNX1 signals per cell) [34]. Patients
with iAMP21 are older (median 9 years vs 5 years) with
a low white cell count (median 3.9 vs 12.4) compared to
children without this abnormality [35]. In a study of, 1630
ALL patients were treated on the UK MRC ALL97 protocol,
iAMP21 was recognized as an independent predictor of poor
EFS (29% vs 78%) and OS (71% vs 87%) at 5 years [35]. The
results of two cohorts of patients with B-cell precursor ALL
and iAMP amplification (2%) treated on ALL97 or UKALL2003
showed that iAMP21 patients with ALL benefitted from
receiving more intensive therapy in UKALL2003 (event-free
survival (29% vs 78%), relapse (70% vs 16%) and overall
survival rates (67% vs 89%) at 5 years) [36].

BCR-ABL1-like or “Ph-like” ALL

Ph-like ALL, is a newly described subtype of ALL which
exhibit a gene expression profile similar to that of Ph+ ALL
but lacks BCR-ABL1 fusion gene [37–39]. Deletions or muta-
tions of IKZF1 are hallmark of both BCR–ABL1–positive and
Ph-like ALL which strikingly is associated with treatment
failure and disease relapse in both [7, 30, 38, 40] The
incidence of Ph-like ALL increases with age, from 10–15% of
childhood B-ALL to over 25% of ALL in young adults (Fig. 1).
The prognosis of BCR-ABL1–like ALL is poor. In the COG
AALL0232 study, the EFS of the BCR ABL1–like cases was
significantly inferior to that of the non BCR-ABL1 like cases



Table III – Kinase rearrangements and therapeutic targets
in Ph-like ALL [9]

Kinase Tyrosine kinase inhibitor

ABL1 Dasatinib
ABL2 Dasatinib
CSF1R Dasatinib
PDGFRB Dasatinib
CRLF 2 JAK2 inhibitor
JAK2 JAK2 inhibitor
EPOR JAK2 inhibitor
DGKH Unknown
IL2RB JAK1/JAK3 inhibitor
NTRK3 Crizotinib
PTK2B FAK inhibitor
TSLP JAK2 inhibitor
TYK2 TYK2 inhibitor
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(62.6% � 6.9% vs. 85.8% � 2.0%) [41]. Rearrangements and
sequence mutations in several classes of cytokine receptors
and tyrosine kinases are a hallmark of Ph-like ALL [42].
Kinase-activating alterations were identified in 91% of
patients with Ph-like ALL; rearrangements involving ABL1,
ABL2, CRLF2, CSF1R, EPOR, JAK2, NTRK3, PDGFRB, PTK2B, TSLP,
or TYK2 that are responsive to treatment with currently
available TKIs (Tab. III) [9].

PAX5

The PAX5 gene, belongs to the paired box (PAX) gene family
of transcription factors, crucial for B lymphoid cell commit-
ment [43]. Somatic alterations of the PAX5 are a hallmark of
B-ALL and occurred in over one – third of this patients
[44, 45]. These alterations are heterozygous and comprise
focal deletions, translocations, or point mutations that
disrupt PAX5 DNA-binding or transcriptional regulatory
functions [46]. Several studies showed that PAX5 abnormal-
ities were not associated with an unfavorable prognosis and
are not associated to outcome [44, 46]. Also in study of 89
patients with ALL, deletions of PAX5 was observed in 29
patients which had no prognostic significance in ALL [47].

Janus kinase 1 and 2 mutations (JAK1 or JAK2) and
JAK-STAT pathway in ALL

Janus kinase (JAK) is a family of intracellular, non-receptor
tyrosine kinases that transduce cytokine-mediated signals
via the JAK-STAT pathway [48, 49]. The JAK family has four
members:JAK1, JAK2, JAK3, and TYK2 that functioning as
signal transducers to control cellular proliferation, survi-
val, and differentiation [49]. The incidence of JAK mutation
in ALL has been reported to be about 18 [50, 51] to 35% in
DS-ALL [52] and about 10% in high risk BCR-ABL1 negative
ALL and have been associated with poor outcome [18].
Notably, between other family members, JAK2 mutations
are more common (at or near JAK2 R683) in B-progenitor
ALL [18, 50]. Importantly, JAK mutations were shown to be
associated with CRLF2 rearrangements, it has been shown
that 70% of CRLF2-rearranged cases also harbor JAK muta-
tions [19]. Over expression of CRLF2 with JAK2 mutants
resulted in cytokine-independent cell growth and constitu-
tive activation of JAK-STAT signaling pathway, demonstrat-
ing that these two genetic lesions together contribute to
leukemogenesis in B-progenitor ALL [19]. The signal trans-
ducers and activators of transcription (STAT) family is one
of the best characterized downstream that is activated by
JAK signaling. It contains a number of latent transcription
factors that, when phosphorylated by the JAKs, drive the
expression of genes involved in proliferation, apoptosis,
migration, differentiation [53–55]. Disrupted or dysregu-
lated JAK-STAT pathway result in immune deficiency
syndromes and cancers [56]. Gain-of-function mutations in
IL7R is one of the other mutations that activate the JAK-
STAT signaling pathway and have been identified in
patients with ALL. Activating mutations in IL7R are com-
monly found in T and B cell ALL and are frequently placed
in the transmembrane domain [20, 57, 58]. IL7R is essential
for normal lymphoid development [59]. IL7R heterodi-
merizes either with interleukin 2 receptor subunit gamma
(IL2RG) to form a receptor to IL-7 or with CRLF2 to form
a receptor to TSLP [60, 61]. Activating mutations in IL7R
lead to dimerization and constitutive activation of the IL-7
receptor and resulting in cytokine independent activation
of the downstream signaling pathways including JAK–STAT
signaling pathway [57].

Conclusions

Obviously genome sequencing has revolutionized our
knowledge of the genomic basis of ALL. These techniques
helped us to identify new clinically important ALL subtypes
and leukaemogenic alterations, which have led to a better
risk stratification and will lead to improvement of patient-
directed or individualized therapy for every patient. How-
ever, more comprehensively sequenced ALL genome is
required to fully understand all somatic genetic alteration of
ALL that incorporate to treatment failure and disease
relapse.

Authors’ contributions/ Wkład autorów

SMM – study design, data collection and interpretation,
manuscript preparation, literature search. HNC, DMN – data
interpretation, funds collection.

Conflict of interest/ Konflikt interesu

None declared.

Financial support/ Finansowanie

This study was supported by Vice Chancellor for Research
(VCR) of Tabriz University of Medical Sciences (Grant No: 54/
16960).



a c t a h a e m a t o l o g i c a p o l o n i c a 4 8 ( 2 0 1 7 ) 1 0 – 1 7 15
Ethics/ Etyka

The work described in this article has been carried out in
accordance with The Code of Ethics of the World Medical
Association (Declaration of Helsinki) for experiments invol-
ving humans; EU Directive 2010/63/EU for animal experi-
ments; Uniform Requirements for manuscripts submitted to
Biomedical journals.

r e f e r e n c e s / p i �s m i e n n i c t w o

[1] Larson S, Stock W. Progress in the treatment of adults with
acute lymphoblastic leukemia. Curr Opin Hematol 2008;15
(4):400–407.

[2] Pui C-H, Mullighan CG, Evans WE, Relling MV. Pediatric
acute lymphoblastic leukemia: where are we going and how
do we get there? Blood 2012;120(6):1165–1174.

[3] Meijerink JP, den Boer ML, Pieters R. New genetic
abnormalities and treatment response in acute
lymphoblastic leukemia. Semin Hematol 2009;46(1):16–23.
http://dx.doi.org/10.1053/j.seminhematol.2008.09.006.

[4] Harrison CJ. Targeting signaling pathways in acute
lymphoblastic leukemia: new insights. Hematology Am Soc
Hematol Educ Program 2013;2013:118–125. http://dx.doi.org/
10.1182/asheducation-2013.1.118.

[5] Pui C-H, Relling MV, Downing JR. Acute lymphoblastic
leukemia. N Engl J Med 2004;350(15):1535–1548.

[6] Ramakers-van Woerden NL, Pieters R, Loonen AH, Hubeek I,
van Drunen E, Beverloo HB, et al. TEL/AML1 gene fusion is
related to in vitro drug sensitivity for L-asparaginase in
childhood acute lymphoblastic leukemia. Blood 2000;96
(3):1094–1099.

[7] Kaspers GJ, Smets LA, Pieters R, Van Zantwijk CH, Van
Wering ER, Veerman AJ. Favorable prognosis of
hyperdiploid common acute lymphoblastic leukemia may
be explained by sensitivity to antimetabolites and other
drugs: results of an in vitro study. Blood 1995;85(3):751–756.

[8] Woo JS, Alberti MO, Tirado CA. Childhood B-acute
lymphoblastic leukemia: a genetic update. Exp Hematol
Oncol 2014;3:16. http://dx.doi.org/10.1186/2162-3619-3-16.

[9] Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang YL, Pei
D, et al. Targetable kinase-activating lesions in Ph-like
acute lymphoblastic leukemia. N Engl J Med 2014;371
(11):1005–1015. http://dx.doi.org/10.1056/NEJMoa1403088.

[10] Yoda A, Yoda Y, Chiaretti S, Bar-Natan M, Mani K, Rodig SJ,
et al. Functional screening identifies CRLF2 in precursor B-
cell acute lymphoblastic leukemia. Proc Natl Acad Sci U S A
2010;107(1):252–257. http://dx.doi.org/10.1073/
pnas.0911726107.

[11] Mullighan CG, Collins-Underwood JR, Phillips LA, Loudin
MG, Liu W, Zhang J, et al. Rearrangement of CRLF2 in B-
progenitor- and down syndrome-associated acute
lymphoblastic leukemia. Nat Genet 2009;41(11):1243–1246.
http://dx.doi.org/10.1038/ng.469.

[12] Russell LJ, De Castro DG, Griffiths M, Telford N, Bernard O,
Panzer-Grumayer R, et al. A novel translocation, t(14;19)
(q32;p13), involving IGH@ and the cytokine receptor for
erythropoietin. Leukemia 2009;23(3):614–617. http://dx.doi.
org/10.1038/leu.2008.250.

[13] Pandey A, Ozaki K, Baumann H, Levin SD, Puel A, Farr AG,
et al. Cloning of a receptor subunit required for signaling by
thymic stromal lymphopoietin. Nat Immunol 2000;1(1):59–
64. http://dx.doi.org/10.1038/76923.
[14] Akasaka T, Balasas T, Russell LJ, Sugimoto KJ, Majid A,
Walewska R, et al. Five members of the CEBP transcription
factor family are targeted by recurrent IGH translocations in
B-cell precursor acute lymphoblastic leukemia (BCP-ALL).
Blood 2007;109(8):3451–3461. http://dx.doi.org/10.1182/
blood-2006-08-041012.

[15] Russell LJ, Capasso M, Vater I, Akasaka T, Bernard OA,
Calasanz MJ, et al. Deregulated expression of cytokine
receptor gene, CRLF2, is involved in lymphoid
transformation in B-cell precursor acute lymphoblastic
leukemia. Blood 2009;114(13):2688–2698. http://dx.doi.org/
10.1182/blood-2009-03-208397.

[16] Cario G, Zimmermann M, Romey R, Gesk S, Vater I, Harbott
J, et al. Presence of the P2RY8-CRLF2 rearrangement is
associated with a poor prognosis in non-high-risk precursor
B-cell acute lymphoblastic leukemia in children treated
according to the ALL-BFM 2000 protocol. Blood 2010;115
(26):5393–5397. http://dx.doi.org/10.1182/blood-2009-11-
256131.

[17] Chen IM, Harvey RC, Mullighan CG, Gastier-Foster J,
Wharton W, Kang H, et al. Outcome modeling with CRLF2,
IKZF1, JAK, and minimal residual disease in pediatric acute
lymphoblastic leukemia: a Children's Oncology Group
study. Blood 2012;119(15):3512–3522. http://dx.doi.org/
10.1182/blood-2011-11-394221.

[18] Mullighan CG, Zhang J, Harvey RC, Collins-Underwood JR,
Schulman BA, Phillips LA, et al. JAK mutations in high-risk
childhood acute lymphoblastic leukemia. Proc Natl Acad
Sci U S A 2009;106(23):9414–9418. http://dx.doi.org/10.1073/
pnas.0811761106.

[19] Harvey RC, Mullighan CG, Chen IM, Wharton W, Mikhail
FM, Carroll AJ, et al. Rearrangement of CRLF2 is associated
with mutation of JAK kinases, alteration of IKZF1, Hispanic/
Latino ethnicity, and a poor outcome in pediatric B-
progenitor acute lymphoblastic leukemia. Blood 2010;115
(26):5312–5321. http://dx.doi.org/10.1182/blood-2009-09-
245944.

[20] Shochat C, Tal N, Bandapalli OR, Palmi C, Ganmore I, te
Kronnie G, et al. Gain-of-function mutations in interleukin-
7 receptor-alpha (IL7R) in childhood acute lymphoblastic
leukemias. J Exp Med 2011;208(5):901–908. http://dx.doi.org/
10.1084/jem.20110580.

[21] Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-
Turner D, et al. The genetic basis of early T-cell precursor
acute lymphoblastic leukaemia. Nature 2012;481(7380):157–
163. http://www.nature.com/nature/journal/v481/n7380/
abs/nature10725.html#supplementary-information.

[22] Mullighan CG, Su X, Zhang J, Radtke I, Phillips LA, Miller CB,
et al. Deletion of IKZF1 and prognosis in acute
lymphoblastic leukemia. N Engl J Med 2009;360(5):470–480.
http://dx.doi.org/10.1056/NEJMoa0808253.

[23] Georgopoulos K, Bigby M, Wang JH, Molnar A, Wu P,
Winandy S, et al. The Ikaros gene is required for the
development of all lymphoid lineages. Cell 1994;79(1):143–
156.

[24] Martinelli G, Iacobucci I, Storlazzi CT, Vignetti M, Paoloni F,
Cilloni D, et al. IKZF1 (Ikaros) deletions in BCR-ABL1-
positive acute lymphoblastic leukemia are associated with
short disease-free survival and high rate of cumulative
incidence of relapse: a GIMEMA AL WP report. J Clin Oncol
2009;27(31):5202–5207. http://dx.doi.org/10.1200/
jco.2008.21.6408.

[25] Trageser D, Iacobucci I, Nahar R, Duy C, von Levetzow G,
Klemm L, et al. Pre-B cell receptor-mediated cell cycle arrest
in Philadelphia chromosome-positive acute lymphoblastic
leukemia requires IKAROS function. J Exp Med 2009;206
(8):1739–1753. http://dx.doi.org/10.1084/jem.20090004.

[26] Iacobucci I, Lonetti A, Cilloni D, Messa F, Ferrari A, Zuntini
R, et al. Identification of different Ikaros cDNA transcripts in

http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0355
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0355
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0355
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0360
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0360
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0360
http://dx.doi.org/10.1053/j.seminhematol.2008.09.006
http://dx.doi.org/10.1053/j.seminhematol.2008.09.006
http://dx.doi.org/10.1182/asheducation-2013.1.118
http://dx.doi.org/10.1182/asheducation-2013.1.118
http://dx.doi.org/10.1182/asheducation-2013.1.118
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0375
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0375
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0380
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0380
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0380
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0380
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0380
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0385
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0385
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0385
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0385
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0385
http://dx.doi.org/10.1186/2162-3619-3-16
http://dx.doi.org/10.1186/2162-3619-3-16
http://dx.doi.org/10.1056/NEJMoa1403088
http://dx.doi.org/10.1056/NEJMoa1403088
http://dx.doi.org/10.1073/pnas.0911726107
http://dx.doi.org/10.1073/pnas.0911726107
http://dx.doi.org/10.1073/pnas.0911726107
http://dx.doi.org/10.1038/ng.469
http://dx.doi.org/10.1038/ng.469
http://dx.doi.org/10.1038/leu.2008.250
http://dx.doi.org/10.1038/leu.2008.250
http://dx.doi.org/10.1038/leu.2008.250
http://dx.doi.org/10.1038/76923
http://dx.doi.org/10.1038/76923
http://dx.doi.org/10.1182/blood-2006-08-041012
http://dx.doi.org/10.1182/blood-2006-08-041012
http://dx.doi.org/10.1182/blood-2006-08-041012
http://dx.doi.org/10.1182/blood-2009-03-208397
http://dx.doi.org/10.1182/blood-2009-03-208397
http://dx.doi.org/10.1182/blood-2009-03-208397
http://dx.doi.org/10.1182/blood-2009-11-256131
http://dx.doi.org/10.1182/blood-2009-11-256131
http://dx.doi.org/10.1182/blood-2009-11-256131
http://dx.doi.org/10.1182/blood-2011-11-394221
http://dx.doi.org/10.1182/blood-2011-11-394221
http://dx.doi.org/10.1182/blood-2011-11-394221
http://dx.doi.org/10.1073/pnas.0811761106
http://dx.doi.org/10.1073/pnas.0811761106
http://dx.doi.org/10.1073/pnas.0811761106
http://dx.doi.org/10.1182/blood-2009-09-245944
http://dx.doi.org/10.1182/blood-2009-09-245944
http://dx.doi.org/10.1182/blood-2009-09-245944
http://dx.doi.org/10.1084/jem.20110580
http://dx.doi.org/10.1084/jem.20110580
http://dx.doi.org/10.1084/jem.20110580
http://www.nature.com/nature/journal/v481/n7380/abs/nature10725.html
http://www.nature.com/nature/journal/v481/n7380/abs/nature10725.html
http://dx.doi.org/10.1056/NEJMoa0808253
http://dx.doi.org/10.1056/NEJMoa0808253
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0465
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0465
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0465
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0465
http://dx.doi.org/10.1200/jco.2008.21.6408
http://dx.doi.org/10.1200/jco.2008.21.6408
http://dx.doi.org/10.1200/jco.2008.21.6408
http://dx.doi.org/10.1084/jem.20090004
http://dx.doi.org/10.1084/jem.20090004


a c t a h a e m a t o l o g i c a p o l o n i c a 4 8 ( 2 0 1 7 ) 1 0 – 1 716
Philadelphia-positive adult acute lymphoblastic leukemia
by a high-throughput capillary electrophoresis sizing
method. Haematologica 2008;93(12):1814–1821. http://dx.
doi.org/10.3324/haematol.13260.

[27] Mullighan CG, Su X, Zhang J, Radtke I, Phillips LA, Miller CB,
et al. Deletion of IKZF1 and prognosis in acute
lymphoblastic leukemia. N Engl J Med 2009;360(5):470–480.

[28] van der Veer A, Waanders E, Pieters R, Willemse ME, Van
Reijmersdal SV, Russell LJ, et al. Independent prognostic
value of BCR-ABL1-like signature and IKZF1 deletion, but
not high CRLF2 expression, in children with B-cell precursor
ALL. Blood 2013;122(15):2622–2629. http://dx.doi.org/
10.1182/blood-2012-10-462358.

[29] Kuiper RP, Waanders E, van der Velden VH, van Reijmersdal
SV, Venkatachalam R, Scheijen B, et al. IKZF1 deletions
predict relapse in uniformly treated pediatric precursor B-
ALL. Leukemia 2010;24(7):1258–1264. http://dx.doi.org/
10.1038/leu.2010.87.

[30] van der Veer A, Zaliova M, Mottadelli F, De Lorenzo P, Te
Kronnie G, Harrison CJ, et al. IKZF1 status as a prognostic
feature in BCR-ABL1-positive childhood ALL. Blood 2014;123
(11):1691–1698. http://dx.doi.org/10.1182/blood-2013-06-
509794.

[31] Ma SK, Wan TS, Cheuk AT, Fung LF, Chan GC, Chan SY,
et al. Characterization of additional genetic events in
childhood acute lymphoblastic leukemia with TEL/AML1
gene fusion: a molecular cytogenetics study. Leukemia
2001;15(9):1442–1447.

[32] Moorman AV. The clinical relevance of chromosomal and
genomic abnormalities in B-cell precursor acute
lymphoblastic leukaemia. Blood Rev 2012;26(3):123–135.
http://dx.doi.org/10.1016/j.blre.2012.01.001.

[33] Harrison CJ, Moorman AV, Schwab C, Carroll AJ, Raetz EA,
Devidas M, et al. An international study of
intrachromosomal amplification of chromosome 21
(iAMP21): cytogenetic characterization and outcome.
Leukemia 2014;28(5):1015–1021. http://dx.doi.org/10.1038/
leu.2013.317.

[34] Harrison CJ. Cytogenetics of paediatric and adolescent
acute lymphoblastic leukaemia. Br J Haematol 2009;144
(2):147–156. http://dx.doi.org/10.1111/j.1365-
2141.2008.07417.x.

[35] Moorman AV, Richards SM, Robinson HM, Strefford JC,
Gibson BE, Kinsey SE, et al. Prognosis of children with acute
lymphoblastic leukemia (ALL) and intrachromosomal
amplification of chromosome 21 (iAMP21). Blood 2007;109
(6):2327–2330. http://dx.doi.org/10.1182/blood-2006-08-
040436.

[36] Moorman AV, Robinson H, Schwab C, Richards SM, Hancock
J, Mitchell CD, et al. Risk-directed treatment intensification
significantly reduces the risk of relapse among children and
adolescents with acute lymphoblastic leukemia and
intrachromosomal amplification of chromosome 21: a
comparison of the MRC ALL97/99 and UKALL2003 trials. J
Clin Oncol 2013;31(27):3389–3396. http://dx.doi.org/10.1200/
jco.2013.48.9377.

[37] Medeiros BC. Deletion of IKZF1 and prognosis in acute
lymphoblastic leukemia. N Engl J Med 2009;360(17):1787.
http://dx.doi.org/10.1056/NEJMc090454. author reply 1788.

[38] Den Boer ML, van Slegtenhorst M, De Menezes RX, Cheok
MH, Buijs-Gladdines JG, Peters ST, et al. A subtype of
childhood acute lymphoblastic leukaemia with poor
treatment outcome: a genome-wide classification study.
Lancet Oncol 2009;10(2):125–134. http://dx.doi.org/10.1016/
s1470-2045(08)70339-5.

[39] Payne-Turner D, Pei D, Becksfort J, Harvey RC, Li Y, Song G,
et al. Integrated genomic and mutational profiling of
adolescent and young adult ALL identifies a high frequency
of BCR-ABL1-Like all with very poor outcome. Blood
2013;122(21):825.

[40] Mullighan CG, Miller CB, Radtke I, Phillips LA, Dalton J, Ma J,
et al. BCR-ABL1 lymphoblastic leukaemia is characterized
by the deletion of Ikaros. Nature 2008;453(7191):110–114.
http://dx.doi.org/10.1038/nature06866.

[41] Loh ML, Harvey RC, Mullighan CG, Linda SB, Devidas M,
Borowitz MJ, et al., editors. A BCR-ABL1-Like. Gene
Expression Profile Confers a Poor Prognosis In Patients with
High-Risk Acute Lymphoblastic Leukemia (HR-ALL): A
Report From Children's Oncology Group (COG) AALL0232.
Blood. 1900M STREET, NW SUITE 200, WASHINGTON, DC
20036 USA: AMER SOC HEMATOLOGY; 2011.

[42] Roberts KG, Morin RD, Zhang J, Hirst M, Zhao Y, Su X, et al.
Genetic alterations activating kinase and cytokine receptor
signaling in high-risk acute lymphoblastic leukemia.
Cancer Cell 2012;22(2):153–166. http://dx.doi.org/10.1016/j.
ccr.2012.06.005.

[43] Cobaleda C, Schebesta A, Delogu A, Busslinger M. Pax5: the
guardian of B cell identity and function. Nat Immunol
2007;8(5):463–470. http://dx.doi.org/10.1038/ni1454.

[44] Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith
E, Dalton JD, et al. Genome-wide analysis of genetic
alterations in acute lymphoblastic leukaemia. Nature
2007;446(7137):758–764. http://dx.doi.org/10.1038/
nature05690.

[45] Kuiper RP, Schoenmakers EF, van Reijmersdal SV, Hehir-
Kwa JY, van Kessel AG, van Leeuwen FN, et al. High-
resolution genomic profiling of childhood ALL reveals novel
recurrent genetic lesions affecting pathways involved in
lymphocyte differentiation and cell cycle progression.
Leukemia 2007;21(6):1258–1266. http://dx.doi.org/10.1038/sj.
leu.2404691.

[46] Familiades J, Bousquet M, Lafage-Pochitaloff M, Bene MC,
Beldjord K, De Vos J, et al. PAX5 mutations occur frequently
in adult B-cell progenitor acute lymphoblastic leukemia
and PAX5 haploinsufficiency is associated with BCR-ABL1
and TCF3-PBX1 fusion genes: a GRAALL study. Leukemia
2009;23(11):1989–1998. http://dx.doi.org/10.1038/
leu.2009.135.

[47] Iacobucci I, Lonetti A, Paoloni F, Papayannidis C, Ferrari A,
Storlazzi CT, et al. The PAX5 gene is frequently rearranged
in BCR-ABL1-positive acute lymphoblastic leukemia but is
not associated with outcome. A report on behalf of the
GIMEMA Acute Leukemia Working Party. Haematologica
2010;95(10):1683–1690. http://dx.doi.org/10.3324/
haematol.2009.020792.

[48] Yamaoka K, Saharinen P, Pesu M, Holt 3rd V, Silvennoinen
O, O'Shea JJ. The janus kinases (Jaks). Genome Biol 2004;5
(12):253.

[49] Schindler C, Levy DE, Decker T. JAK-STAT signaling: from
interferons to cytokines. J Biol Chem 2007;282(28):20059–
20063. http://dx.doi.org/10.1074/jbc.R700016200.

[50] Bercovich D, Ganmore I, Scott LM, Wainreb G, Birger Y,
Elimelech A, et al. Mutations of JAK2 in acute lymphoblastic
leukaemias associated with Down's syndrome. Lancet
2008;372(9648):1484–1492. http://dx.doi.org/10.1016/s0140-
6736(08)61341-0.

[51] Gaikwad A, Rye CL, Devidas M, Heerema NA, Carroll AJ,
Izraeli S, et al. Prevalence and clinical correlates of JAK2
mutations in Down syndrome acute lymphoblastic
leukaemia. Br J Haematol 2009;144(6):930–932. http://dx.doi.
org/10.1111/j.1365-2141.2008.07552.x.

[52] Kearney L, Gonzalez De Castro D, Yeung J, Procter J, Horsley
SW, Eguchi-Ishimae M, et al. Specific JAK2 mutation
(JAK2R683) and multiple gene deletions in Down syndrome
acute lymphoblastic leukemia. Blood 2009;113(3):646–648.
http://dx.doi.org/10.1182/blood-2008-08-170928.

http://dx.doi.org/10.3324/haematol.13260
http://dx.doi.org/10.3324/haematol.13260
http://dx.doi.org/10.3324/haematol.13260
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0485
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0485
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0485
http://dx.doi.org/10.1182/blood-2012-10-462358
http://dx.doi.org/10.1182/blood-2012-10-462358
http://dx.doi.org/10.1182/blood-2012-10-462358
http://dx.doi.org/10.1038/leu.2010.87
http://dx.doi.org/10.1038/leu.2010.87
http://dx.doi.org/10.1038/leu.2010.87
http://dx.doi.org/10.1182/blood-2013-06-509794
http://dx.doi.org/10.1182/blood-2013-06-509794
http://dx.doi.org/10.1182/blood-2013-06-509794
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0505
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0505
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0505
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0505
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0505
http://dx.doi.org/10.1016/j.blre.2012.01.001
http://dx.doi.org/10.1016/j.blre.2012.01.001
http://dx.doi.org/10.1038/leu.2013.317
http://dx.doi.org/10.1038/leu.2013.317
http://dx.doi.org/10.1038/leu.2013.317
http://dx.doi.org/10.1111/j.1365-2141.2008.07417.x
http://dx.doi.org/10.1111/j.1365-2141.2008.07417.x
http://dx.doi.org/10.1111/j.1365-2141.2008.07417.x
http://dx.doi.org/10.1182/blood-2006-08-040436
http://dx.doi.org/10.1182/blood-2006-08-040436
http://dx.doi.org/10.1182/blood-2006-08-040436
http://dx.doi.org/10.1200/jco.2013.48.9377
http://dx.doi.org/10.1200/jco.2013.48.9377
http://dx.doi.org/10.1200/jco.2013.48.9377
http://dx.doi.org/10.1056/NEJMc090454
http://dx.doi.org/10.1056/NEJMc090454
http://dx.doi.org/10.1016/s1470-2045(08)70339-5
http://dx.doi.org/10.1016/s1470-2045(08)70339-5
http://dx.doi.org/10.1016/s1470-2045(08)70339-5
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0550
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0550
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0550
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0550
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0550
http://dx.doi.org/10.1038/nature06866
http://dx.doi.org/10.1038/nature06866
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0560
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0560
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0560
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0560
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0560
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0560
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0560
http://dx.doi.org/10.1016/j.ccr.2012.06.005
http://dx.doi.org/10.1016/j.ccr.2012.06.005
http://dx.doi.org/10.1016/j.ccr.2012.06.005
http://dx.doi.org/10.1038/ni1454
http://dx.doi.org/10.1038/ni1454
http://dx.doi.org/10.1038/nature05690
http://dx.doi.org/10.1038/nature05690
http://dx.doi.org/10.1038/nature05690
http://dx.doi.org/10.1038/sj.leu.2404691
http://dx.doi.org/10.1038/sj.leu.2404691
http://dx.doi.org/10.1038/sj.leu.2404691
http://dx.doi.org/10.1038/leu.2009.135
http://dx.doi.org/10.1038/leu.2009.135
http://dx.doi.org/10.1038/leu.2009.135
http://dx.doi.org/10.3324/haematol.2009.020792
http://dx.doi.org/10.3324/haematol.2009.020792
http://dx.doi.org/10.3324/haematol.2009.020792
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0595
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0595
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0595
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0595
http://dx.doi.org/10.1074/jbc.R700016200
http://dx.doi.org/10.1074/jbc.R700016200
http://dx.doi.org/10.1016/s0140-6736(08)61341-0
http://dx.doi.org/10.1016/s0140-6736(08)61341-0
http://dx.doi.org/10.1016/s0140-6736(08)61341-0
http://dx.doi.org/10.1111/j.1365-2141.2008.07552.x
http://dx.doi.org/10.1111/j.1365-2141.2008.07552.x
http://dx.doi.org/10.1111/j.1365-2141.2008.07552.x
http://dx.doi.org/10.1182/blood-2008-08-170928
http://dx.doi.org/10.1182/blood-2008-08-170928


a c t a h a e m a t o l o g i c a p o l o n i c a 4 8 ( 2 0 1 7 ) 1 0 – 1 7 17
[53] Shuai K, Liu B. Regulation of JAK-STAT signalling in the
immune system. Nat Rev Immunol 2003;3(11):900–911.
http://dx.doi.org/10.1038/nri1226.

[54] O'Shea JJ, Pesu M, Borie DC, Changelian PS. A new modality
for immunosuppression: targeting the JAK/STAT pathway.
Nat Rev Drug Discov 2004;3(7):555–564. http://dx.doi.org/
10.1038/nrd1441.

[55] Fridman JS, Scherle PA, Collins R, Burn T, Neilan CL, Hertel
D, et al. Preclinical evaluation of local JAK1 and JAK2
inhibition in cutaneous inflammation. J Invest Dermatol
2011;131(9):1838–1844. http://dx.doi.org/10.1038/
jid.2011.140.

[56] Aaronson DS, Horvath CM. A road map for those who don’t
know JAK-STAT. Science 2002;296(5573):1653–1655. http://
dx.doi.org/10.1126/science.1071545.

[57] Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-
Turner D, et al. The genetic basis of early T-cell precursor
acute lymphoblastic leukaemia. Nature 2012;481(7380):157–
163. http://dx.doi.org/10.1038/nature10725.

[58] Zenatti PP, Ribeiro D, Li W, Zuurbier L, Silva MC, Paganin M,
et al. Oncogenic IL7R gain-of-function mutations in
childhood T-cell acute lymphoblastic leukemia. Nat Genet
2011;43(10):932–939. http://dx.doi.org/10.1038/ng.924.

[59] Peschon JJ, Morrissey PJ, Grabstein KH, Ramsdell FJ,
Maraskovsky E, Gliniak BC, et al. Early lymphocyte
expansion is severely impaired in interleukin 7 receptor-
deficient mice. J Exp Med 1994;180(5):1955–1960.

[60] Noguchi M, Nakamura Y, Russell SM, Ziegler SF, Tsang M,
Cao X, et al. Interleukin-2 receptor gamma chain: a
functional component of the interleukin-7 receptor.
Science 1993;262(5141):1877–1880.

[61] Liu YJ, Soumelis V, Watanabe N, Ito T, Wang YH, Malefyt
Rde W, et al. TSLP: an epithelial cell cytokine that regulates
T cell differentiation by conditioning dendritic cell
maturation. Annu Rev Immunol 2007;25:193–219. http://dx.
doi.org/10.1146/annurev.immunol.25.022106.141718.
[62] Rochman Y, Kashyap M, Robinson GW, Sakamoto K,
Gomez-Rodriguez J, Wagner KU, et al. Thymic stromal
lymphopoietin-mediated STAT5 phosphorylation via
kinases JAK1 and JAK2 reveals a key difference from IL-7-
induced signaling. Proc Natl Acad Sci U S A 2010;107
(45):19455–19460. http://dx.doi.org/10.1073/
pnas.1008271107.

[63] Shochat C, Tal N, Bandapalli OR, Palmi C, Ganmore I, te
Kronnie G, et al. Gain-of-function mutations in interleukin-
7 receptor-a (IL7R) in childhood acute lymphoblastic
leukemias. J Exp Med 2011;208(5):901–908.

[64] Zenatti PP, Ribeiro D, Li W, Zuurbier L, Silva MC, Paganin M,
et al. Oncogenic IL7R gain-of-function mutations in
childhood T-cell acute lymphoblastic leukemia. Nat Genet
2011;43(10):932–939. http://www.nature.com/ng/journal/
v43/n10/abs/ng.924.html#supplementary-information.

[65] Tzoneva G, Perez-Garcia A, Carpenter Z, Khiabanian H,
Tosello V, Allegretta M, et al. Activating mutations in the
NT5C2 nucleotidase gene drive chemotherapy resistance in
relapsed ALL. Nat Med 2013;19(3):368–371. http://dx.doi.org/
10.1038/nm.3078.

[66] Hof J, Krentz S, van Schewick C, Korner G, Shalapour S,
Rhein P, et al. Mutations and deletions of the TP53 gene
predict nonresponse to treatment and poor outcome in first
relapse of childhood acute lymphoblastic leukemia. J Clin
Oncol 2011;29(23):3185–3193. http://dx.doi.org/10.1200/
jco.2011.34.8144.

[67] Mullighan CG, Zhang J, Kasper LH, Lerach S, Payne-Turner
D, Phillips LA, et al. CREBBP mutations in relapsed acute
lymphoblastic leukaemia. Nature 2011;471(7337):235–239.
http://dx.doi.org/10.1038/nature09727.

[68] Roberts KG, Mullighan CG. Genomics in acute
lymphoblastic leukaemia: insights and treatment
implications. Nat Rev Clin Oncol 2015;12(6):344–357.

[69] Harrison CJ. Targeting signaling pathways in acute
lymphoblastic leukemia: new insights. ASH Edu Prog Book
2013;2013(1):118–125.

http://dx.doi.org/10.1038/nri1226
http://dx.doi.org/10.1038/nri1226
http://dx.doi.org/10.1038/nrd1441
http://dx.doi.org/10.1038/nrd1441
http://dx.doi.org/10.1038/nrd1441
http://dx.doi.org/10.1038/jid.2011.140
http://dx.doi.org/10.1038/jid.2011.140
http://dx.doi.org/10.1038/jid.2011.140
http://dx.doi.org/10.1126/science.1071545
http://dx.doi.org/10.1126/science.1071545
http://dx.doi.org/10.1126/science.1071545
http://dx.doi.org/10.1038/nature10725
http://dx.doi.org/10.1038/nature10725
http://dx.doi.org/10.1038/ng.924
http://dx.doi.org/10.1038/ng.924
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0650
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0650
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0650
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0650
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0655
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0655
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0655
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0655
http://dx.doi.org/10.1146/annurev.immunol.25.022106.141718
http://dx.doi.org/10.1146/annurev.immunol.25.022106.141718
http://dx.doi.org/10.1146/annurev.immunol.25.022106.141718
http://dx.doi.org/10.1073/pnas.1008271107
http://dx.doi.org/10.1073/pnas.1008271107
http://dx.doi.org/10.1073/pnas.1008271107
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0670
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0670
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0670
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0670
http://www.nature.com/ng/journal/v43/n10/abs/ng.924.html#supplementary-information
http://www.nature.com/ng/journal/v43/n10/abs/ng.924.html#supplementary-information
http://dx.doi.org/10.1038/nm.3078
http://dx.doi.org/10.1038/nm.3078
http://dx.doi.org/10.1038/nm.3078
http://dx.doi.org/10.1200/jco.2011.34.8144
http://dx.doi.org/10.1200/jco.2011.34.8144
http://dx.doi.org/10.1200/jco.2011.34.8144
http://dx.doi.org/10.1038/nature09727
http://dx.doi.org/10.1038/nature09727
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0695
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0695
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0695
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0700
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0700
http://refhub.elsevier.com/S0001-5814(16)30141-4/sbref0700

	Genetic alterations in B-acute lymphoblastic leukemia
	Introduction
	Primary genetic subtypes of B-cell precursor ALL
	Submicroscopic genetic aberration in ALL
	Cytokine receptor like factor 2 rearrangements in ALL (CRLF2)
	IKZF1 gene deletions
	Intrachromosomal amplifications of chromosome 21 (iAMP21) in ALL
	BCR-ABL1-like or “Ph-like” ALL
	PAX5
	Janus kinase 1 and 2 mutations (JAK1 or JAK2) and JAK-STAT pathway in ALL
	Conclusions
	Authors’ contributions/ Wkład autorów
	Conflict of interest/ Konflikt interesu
	Financial support/ Finansowanie
	Ethics/ Etyka
	References/Piśmiennictwo


