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Hematopoiesis is a complex process, which takes place in the 
bone marrow microenvironment in a so-called hematopoietic niche. 
Within the hematopoietic niche, osteoblastic, and vascular parts are 
distinguished. The osteoblastic part of the HSC niche is responsible 
for maintenance of dormant, resting HSC, while active, dividing 
HSCs are located mainly near endothelial cells (EC) in the vascular 
part of the niche [1]. The close relation of the hematopoietic cells 
with stromal cells is mediated by interactions of adhesive molecules 
with respective ligands. Hematopoiesis is influenced by processes 
of angiogenesis, which makes interactions much more complicated. 
Angiogenesis is a complex, multifactorial process leading to the 
formation of new vessels [2]. As a multi-step phenomenon, it 
comprises EC proliferation, differentiation, and organization of cells 
to form tubules. Microvessel formation, and spreading are crucial in 
the repair of tissues damaged by ischemia or injury. It is well known 
that angiogenesis is involved in biology, and progression of neoplastic 
disorders [1-6]. Levels of anti- and proangiogenic cytokines and 
miRNAs correspond with the activity of new vessels development. 
In neoplastic disorders, angiogenesis takes part in the dissemination 
of cancer cells and progression of the disease. The other spectrum 
of interest is the evaluation of proangiogenic factors in the context of 
their influence on the regeneration of hematopoiesis after damage 
caused by high dose chemotherapy and stem cells transplantation 
[7]. Bone marrow niche is a unique microenvironment containing 
growth factors, accessory cells, extracellular matrix proteins and 
cell-surface ligands which play important role in hematopoietic niche 
balance [1-3]. Hematopoietic niche plays a crucial role in engraftment 
after hematopoietic stem cell transplantation (HSCT). Homing is 
associated with the new vessel formation, primarily through the 
interactions of HSC cells and endothelial cell-specific factors [1-3]. 
Cytokines which are significant for angiogenesis control bone marrow
niche and HSC trafficking via cross-talk between hematopoietic niche 
parts, and controlling signaling pathways [1-5].

In this review, we focused on the description of key elements of the 
hematopoietic niche that affect HSC traffic and angiogenesis. Most 
of the characterized elements were the subject of our research in 
patients treated with autologous HSCT.

CYTOKINES
VEGF

Vascular endothelial growth factor (VEGF) is a member of the 
cytokines group, which consists of VEGF-A, VEGF-B, VEGF-C, 
VEGF-D and placental growth factor (PGF). VEGF-A and VEGF-C 
play a crucial role in angiogenesis and vasculogenesis, while 
VEGF-B promotes EC survival [8, 9]. VEGF-D is mitogenic for EC 
and may contribute to the tumor development by promoting vascular 
and lymphatic angiogenesis [10]. PGF stimulates angiogenesis in 
physiological condition and during cancer development [11].
VEGF-A (hereafter referred to as VEGF) binds to vascular endothelial 
growth factor receptor 1 and 2 (VEGFR-1, VEGFR-2) and is a key 
regulator of EC proliferation, migration, and adherence [8]. Other 
important receptors for VEGF are neuropilin 1 and 2 receptors (NRP1 
and NRP2). This cytokine stimulates angiogenesis via binding with 
NRP1 and enhances VEGF/VEGFR2 activation [12]. In epidermal 
cancer cells, VEGF/NRP1 promote invasive tumor vascularization 
[12].
VEGF is secreted in an autocrine and paracrine way by healthy cells 
(osteoblasts, stromal cells) and tumor cells as well [8, 10].
VEGF is an important factor in the development of solid tumors, and 
hematological malignancies, in particular non-Hodgkin’s lymphoma 
(NHL) and multiple myeloma (MM) [13-15].
This important regulator of angiogenesis during cancer development 
acts in concert with other molecules: angiopoietins, hypoxia-inducible 
factor 1 and 2 (HIF-1, HIF-2), hepatocyte growth factor (HGF), 
interleukin 6 and 8 (IL-6, IL-8), [8, 16-18]. VEGF stimulates the 

Selected factors influencing angiogenesis 
and hematopoietic niche
Abstract

Angiogenesis is the vital, multistage process in which new blood vessels are created by sprouting from pre-existing vessels. It takes part 
in carcinogenesis and contributes to progression, metastases, and dissemination of neoplastic disease. In the bone marrow, angiogen- 
e sis influences the hematopoietic stem cells (HSC) proliferation, differentiation, and maintenance of normal hematopoiesis under both 
physiological and stress conditions. The bone marrow niche contains different types of cells, including macrophages, osteoblasts, mes- 
enchymal stem cells, endothelial progenitors, and endothelial cells. All of these interact and form a unique microenvironment necessary for 
the appropriate function, and preservation of HSC in the quiescent state, and take a major part in the process of mobilization to peripheral 
blood and homing after transplantation. Cytokines active in the hematopoietic niche as well as miRNAs regulating hemato- poiesis, and 
angiogenesis have a significant influence on processes occurring in the bone marrow. The aim of this review was to present selected 
proteins, and molecules associated with angiogenesis as well as bone marrow niche processes: VEGF, ANGPT1, ANGPT2, MMP-9, SDF-1, 
miRNA-15a, miRNA-16, miRNA-126, miRNA-146a, and miRNA-223.

©  2018 Polish Society of Hematology and Transfusion Medicine, Insitute of Hematology and Transfusion Medicine. All rights reserved.

Keywords:
miRNA, cytokines, VEGF, angiopoietins, MMP-9, bone marrow niche, hematopoiesis

* Corresponding author at: Mateusz Nowicki, Department of Hematology, Copernicus Memorial Hospital in Lodz, Comprehensive Cancer Center and Traumatology, Pabianicka 62, 93-513 Lodz, 
Poland. Tel.: +48 42 68 95 191, fax: +48 42 68 95 192, e-mail: mat.nowicki@gmail.com

Mateusz Nowicki1 
Piotr Stelmach1,2 
Anna Szmigielska-Kapłon1,2

1Department of Hematology, Copernicus 
MemorialHospital in Lodz Comprehensive 
Cancer Center and Traumatology, Poland
2Department of Hematology, Medical 
University of Lodz, Poland

Article history:
Received: 30.03.2018
Accepted: 20.08.2018

journal homepage: https://content.sciendo.com/ahpREVIEW ARTICLE/ PRACA POGLĄDOWA

49(3) • September 2018 • 112-120 • DOI: 10.2478/ahp-2018-0018



113

Acta Haematologica Polonica

formation of new blood vessels and increases vascular permeability 
[8]. This cytokine promotes EC survival by lowering their susceptibility 
to apoptosis [19]. VEGF activates phosphatidylinositol-3-kinase/ 
protein kinase B (PI3K/Akt) pathway and reduces the pro-apoptotic 
potency of chemotherapy [8, 19].
It has been shown that VEGF significantly influences the immune 
system, and inhibits differentiation, and maturation of dendritic cells 
(DC). It results in decreased expression of major histocompatibility 
complex (MHC) II antigens, which in turn impairs the function of 
T-lymphocytes [20]. This process is associated with decreased 
activity of NK-κB signaling pathway [8].
VEGF significantly regulates proliferation and migration of EC. By 
recruiting HSC and endothelial progenitor cells VEGF regulates 
microvessels development in the bone marrow niche and 
fundamentally affects hematopoiesis [15, 21].

ANGPT1 and ANGPT2

Apart from VEGF, angiopoietin 1 (ANGPT1) and angiopoietin 2 
(ANGPT2), both binding to receptor tyrosine kinase Tie-2, are 
important players in angiogenesis regulation [22, 23].
ANGPT1, an agonist of the TIE-2 receptor is expressed in 
bone marrow niche by perivascular cells, osteoblasts, HSC and 
megakaryocytes [24-29]. During angiogenesis, ANGPT1 significantly 
promotes the conversion of the endothelial cell layer to multicellular 
vascular structures, by enhancing interaction between EC and 
pericytes [22, 25, 30]. ANGPT1 is associated with migration, adhesion, 
and survival of EC. Furthermore, it is also a very important factor for 
vascular maturation [25]. Expression of ANGPT1 in rat glioma model, 
which occurs continuously at low levels, promotes malignancy by 
disturbing ANGPT1/ANGPT2 balance and strengthening of the tumor 
vascularization [24, 25].
Through binding to the Tie-2 receptor, ANGPT1 affects the signaling 
pathways of the PI3K/AKT and mitogen-activated protein kinase/ 
extracellular signal-regulated kinase (MAPK/ERK), which significantly 
control the growth, proliferation, and survival related processes of 
EC. The inhibitory effect of ANGPT1 on NF-κB pathway results in 
the inhibition of proinflammatory processes, enhances survival and 
migration of EC, and may promote the tumor development [31-33]. 
In radiated mice, ANGPT1 release is involved in the recovery of 
suppressed bone marrow [25]. Moreover, ANGPT1 interacts with 
Notch signaling pathway, which is responsible for the development, 
differentiation, and survival of HSC [25]. Different conclusions were 
drawn from the study by Zhou et al. [26] who evaluated ANGPT1 
expression in HSC, Leptin Receptor+ (LepR+) stromal cells and their 
influence on hematopoiesis recovery. It was noticed that ANGPT1 
expression by these cells delays hematopoietic recovery after 
irradiation. ANGPT1 deletion from EC didn’t affect hematopoiesis.
ANGPT2 in contrast to ANGPT1 is responsible for the induction of 
EC apoptosis, which leads to the regression of blood vessel [34, 35]. 
The mechanism of ANGPT2 activity and its role in angiogenesis 
is closely associated with VEGF expression. Elevated VEGF 
expression together with ANGPT2 promotes angiogenesis. This 
action is independent of Tie-2 receptor and is a non-canonical mode 
of action dependent on ANGPT2 binding to integrins on Tie-2-low 
EC. This process may occur for example under hypoxic conditions 

and HIF-1 influence [5, 36]. Depending on the presence of VEGF, 
ANGPT2 can be both agonist and antagonist of the Tie-2 receptor. 
ANPT2/Tie2 axis in tumor cells induces angiogenesis. By acting on 
pericytes, ANGPT2/Tie-2 destabilizes blood vessels which results 
in EC stimulation and secretion of angiogenic cytokines, including 
VEGF [22, 23, 37].
ANGPT2 via receptor Tie-2 affects not only EC but also monocytes 
and Tie-2 expressing macrophages (TEMs). TEMs are the subset 
of tumor-associated macrophages (TAMs), which promote tumor 
angiogenesis and thus their development [22, 38].
Levels of proangiogenic cytokines were assessed during HSC 
mobilization in healthy donors by several authors. The kinetics of 
VEGF, angiopoietins level and Tie-2 receptor expression in healthy 
donors mobilized with granulocyte growth stimulation factor (G-CSF) 
were reported by Serefhanoglu et al. [39], who assessed the levels of 
these cytokines in the peripheral blood prior to G-CSF administration 
(baseline) and then 5 days after mobilization (the day of apheresis). 
The authors observed a decrease of Tie-2 receptor expression at 
the time of apheresis and stable angiopoietins level as compared 
to premobilization results. VEGF concentration increased during the 
apheresis procedure.
Another study evaluating different cytokines, including angiopoietins 
and Tie-2 receptor in healthy donors mobilized with G-CSF, was 
performed by Yang et al. [40]. The authors observed that G-CSF 
stimulation resulted in an increase in VEGF concentrations and a 
decrease in Tie-2 receptor expression, as well as angiopoietins in the 
bone marrow. Lysak et al. [41] evaluated several cytokines including 
VEGF during mobilization in healthy donors. No change in VEGF 
concentration was noted in their study.
Levels of VEGF, ANGPT1, and ANGPT2 change significantly during 
mobilization, including chemotherapy and G-CSF administration 
[7, 42]. In patients with lymphoproliferative disorders during CD34+ 
mobilization with chemotherapy and G-CSF stimulation, higher 
baseline VEGF levels correlated with a shorter time of G-CSF 
administration [7].
ANGPT1 level in the peripheral blood decreased at the time 
of apheresis as compared to baseline level assessed prior 
to chemotherapy, while ANGPT2 level increased during the 
mobilization procedure. Moreover, baseline ANGPT2 level was 
the factor predicting failure of mobilization. Additionally, the higher 
baseline level of ANGPT1 correlated with a shorter time of G-CSF 
administration. These results indicate the supportive function of 
bone marrow microvasculature in the mobilization of CD34+ cells to 
peripheral blood [42].

MMP-9

Matrix metalloproteinase 9 (MMP-9) also known as a gelatinase B 
or 92 kDa type IV collagenase, is a member of the zinc-containing 
proteolytic enzyme family [43, 44]. It is secreted by leucocytes 
(mainly neutrophils), HSC and tumor cells. MMP-9 is involved in 
the mobilization and homing of HSC, angiogenesis, tumor growth 
and metastasis [45, 46]. This pro-angiogenic enzyme secreted 
by the stromal cells, EC or HSC is also relevant to the process of 
hematopoiesis after myeloablative chemotherapy and HSCT [47]. 
MMP-9 is responsible for cleavage and release of soluble Kit-ligand 
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(sKitL) form bone marrow stromal cells, which promotes the transfer 
of EC and HSC from quiescence state to proliferation [47]. A smooth 
transition of hematopoietic stem cells through the blood vessel wall 
is necessary for their effective mobilization from the bone marrow 
niche and engraftment after transplantation. MMP-9 allows this 
transmigration through the partial degradation of the sub-endothelial 
basement membrane, composed primarily of type IV collagen, which 
results in effective diapedesis [43]. IL-10 activates tissue inhibitor 
of metalloproteinases 1 (TIMP-1), which downregulates expression 
of MMP-9 and promotes HSC adhesion to the bone marrow 
osteoblastic niche and hematological reconstitution [48]. In HSC 
mobilization, G-CSF stimulates the release of proteolytic enzymes 
from neutrophils, including metalloproteinases and leads to profound 
changes in the HSC microenvironment [49]. G-CSF exerts its activity 
not only by binding with its receptor on neutrophils and HSCs but also 
via an indirect mechanism since the presence of a G-CSF receptor 
is not solely required for mobilization [49]. During G-CSF-mediated 
mobilization neutrophil degranulation occurs leading to upregulation 
of the matrix metalloproteases [50].
The proteolytic environment created by MMP-9, involving G-CSF 
administration after transplantation or during mobilization, adjusts 
the level of vascular cell adhesion molecule 1 (VCAM-1) which 
significantly influences the effectiveness of the release of HSC from 
bone marrow as well as their homing after HSCT [46, 50, 51].
By signaling cross-talk with VEGF, MMP-9 regulates EC migration, 
endothelium permeability, formation of new blood vessels and 
metastasis of cancer cells [45].

SDF-1

Stromal cell-derived factor 1 (SDF-1, CXCL12) is a key protein in 
the migration and proliferation of cells that have a CXCR4 receptor 
on their surface, e.g. HSC, EC, and cancer cells [52]. Upregulated 
expression of CXCR4 is a predictor of poor prognosis in many 
malignancies. In the course of AML and B-cell ALL, overexpression 
of CXCR4 on CD34 positive cells is observed [53, 54]. The interaction 
between CXCR4 and SDF-1 ligand causes homing of the leukemic 
cells in a protective microenvironment of bone marrow niche, resulting 
in resistance to chemotherapy [53, 54].
The SDF-1/CXCR4 signaling pathway plays an important role in 
the mobilization of hematopoietic stem cells from the bone marrow 
niche to the peripheral blood [55]. When used in the mobilization of 
HSC, G-CSF interferes with the SDF-1/CXCR4 signaling pathway, 
reducing the adhesion of HSC to the hematopoietic niche [55-57]. 
Chemotherapy and proinflammatory cytokines cause a short-term 
increase in the concentration of SDF-1 in the bone marrow. Expression 
of this chemokine facilitates HSC homing after transplantation. SDF-1 
promotes cell survival during stress and stimulates osteoclasts to 
produce MMP-9 [58].
The bone marrow microenvironment, containing endothelial cells, 
contributes to proper hematopoietic stem cell function, including 
regeneration after injury caused by chemotherapy. Myelosuppression 
resulting from cytostatic agents is accompanied by destruction of 
bone marrow vasculature; microvessels are then reconstructed with 
the recovery of hematopoiesis. Moreover, the angiogenic factors 
including ANGPT1, ANGPT2, and VEGF play supportive roles in 

the process of mobilization of CD34+ cells to the peripheral blood. 
All of those observations indicate an important function of the 
microvasculature in the migration of hematopoietic progenitors. 
The expression of cytokines active in angiogenesis as well as those 
responsible for maintenance of the homeostasis in hematopoietic 
niche is modulated by miRNAs.

MicroRNAs

MicroRNAs (miRNAs) are class of small ~ 22 nucleotides (19-25), 
endogenous non-coding RNAs, which play an important role in 
post-transcriptional regulation of gene expression [59-61]. By 
targeting the 3’ untranslated regions (UTRs) of messenger RNA 
(mRNA), miRNAs repress translation, which leads to mRNA 
degradation and therefore downregulation of gene expression 
[62-64].
These molecules participate in the regulation of vital processes such 
as cell proliferation, differentiation, and apoptosis [65-69]. Targeting 
the bone marrow niche gene pathways and cytokines certain miRNAs 
can modulate angiogenesis, mobilization of HSC and homing after 
transplantation [70-72]. The role of selected miRNAs in hematopoiesis 
is presented in table I.

miRNA-15a/-16

Variable expression of miRNA-15a/-16 influence the pathogenesis of 
most human cancers, like prostate, colon cancer, and hematological 
malignancies: multiple myeloma, B-cell lymphoma, leukemia and 
polycythemia vera [72-74, 76]. Development and progression of 
malignancies are closely associated with angiogenesis. It has been 
shown that VEGF activity is negatively regulated by expression of 
miRNA-15a/-16. In myeloma cells, miRNA-15a/-16 expression 
inversely correlates with VEGF. Downregulation of the miRNA-15a/-16 
cluster increases the proangiogenic activity of myeloma cells [77]. 
MiRNA-16 is involved in normal erythropoiesis, while deregulation of 
this miRNA contributes to abnormal erythroid lineage in polycythemia 
vera [72]. Apart from the influence on the development of cancer, 
miRNA-15a/-16 is associated with chemoresistance. It has been 
shown that low level of these miRNAs reduces apoptosis, increases 
proliferation of tumor cells and angiogenesis [78]. Downregulation of 
the miRNA-15a/-16 level inversely correlates with the expression of 
oncogenes BCL-2 and BCL-XL in myeloma cells and neoplastic B 
cells [76, 79]. Deregulation of miRNA-15a/-16 expression may affect 
the efficacy of chemotherapy. The resistance to apoptosis, induced by 
a low level of miRNA-15a/-16 reduces the activity of cytarabine [80].
Interleukin 6 (IL-6) secreted by bone marrow stromal cells suppress 
miRNA15a/-16 in U-266 and NCI-H929 myeloma cell lines. Addition 
of bortezomib and melphalan significantly increases miRNA-15a/-16 
expression. Hematopoietic niche protective microenvironment 
enhanced survival of myeloma cells preventing the drug induced 
apoptosis by suppression of miRNA-15a/-16 [78, 79].

miRNA-126

Cytokines and adhesion molecules regulate the migration of 
HSC between the hematopoietic niche and the peripheral blood. 
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MiRNA-126 is involved in this process by targeting VCAM-1 [81]. 
G-CSF-stimulation during mobilization of CD34 positive cells induces 
accumulation of microvesicles containing miRNA-126 and leads to 
downregulation of VCAM-1 expression on bone marrow cells surface 
[81, 82]. VCAM-1 downregulation increases the hematopoietic and 
progenitor stem cells release from the bone marrow niche and 
suppresses homing after HSCT.
MiRNA-126 can influence the expression of ZFP91 gene in 
hematopoietic progenitor cells (HPC) which results in modulation 
of CD34+ cells proliferation, tumorigenesis as well as apoptosis 
[83]. ZFP91 gene promotes the proliferation of tumor cells through 
transcription factor NF-κB mediated activation of HIF-1α [84]. 
MiRNA-15a/-16 cluster plays also a significant role in ZFP91/NK-κB/
HIF-1α pathway [85]. MiRNA-126 regulates angiogenesis and tumor 
development by controlling the expression of targeted VEGF 
signaling repressors (sprouty-related, EVH1 domain-containing 
protein – Spred-1 and phosphoinositide-3-kinase regulatory subunit 2 
– PIK3R2) [86]. High expression of this miRNA in endothelial cells 
downregulates Spred-1 and PIK3R2 and promotes angiogenesis, 
while low expression of miRNA-126 leads to elevation of VEGF 
repressors, inhibition of ANGPT1 and impairment of blood vessels 
formation [86-89].

miRNA-146a

MiRNA-146a is an important molecule influencing inflammation and 
tumorigenesis. Expression of this miRNA is induced by the NF-κB 
protein complex, which plays a significant role in inflammatory response 
[90]. MiRNA-146a regulates mobilization of HSC as well as their 
homing after bone marrow transplantation [90-93]. Previous research 
has shown that under the influence of G-CSF, expression of CXCR4 
chemokine receptor mRNA and protein in AML cells was decreased 
while the level of miRNA-146a was increased [94]. MiRNA-146a 
affects the CXCR4 mRNA, which leads to disruption of the SDF-1/
CXCR4 signaling pathway. It results in more efficient mobilization 
of HSCs, and slower homing [94]. Urocinase-type plasminogen 
activator receptor (uPAR), known to be modulated by miRNA-146a, 
by binding vitronectin is involved in extracellular matrix degradation, 

cell adhesion, and migration. It also allows cross-talk with CXCR4. 
Under GCS-F stimulation, uPAR enhances chemotactic response to 
SDF-1. MiRNA-146a downregulates uPAR/CXCR4 pathway, which 
leads to migration engraftment, and adhesion of hematopoietic 
stem progenitor cells (HSCPC) to the bone marrow niche [95, 96]. 
Through downregulating of superoxide dismutase 2 enzyme (SOD2) 
expression, miRNA-146a increases apoptosis and sensitivity to 
chemotherapy of cancer cells, by enhancement of reactive oxygen 
species (ROS) generation [97].

miRNA-223

MiRNA-223 is a diagnostic biomarker in the course of obesity, 
atherogenesis, numerous solid tumors, such as lung, colon, prostate 
and hematological malignancies [98-102]. Moreover, miRNA-223 
expression is associated with hematopoiesis, differentiation 
and maturation of hematopoietic progenitor cells (HPC) [103]. 
MiRNA-223 stimulates granulopoiesis, erythroid, and megakaryocyte 
differentiation via targeting NFI-A, IGF-1R, and LMO2 genes. It is also 
crucial for homeostasis of mature neutrophils, and limits inflammation 
[103, 104]. Using transcription factors (TF) miRNA-223 is associated 
with regulation of network-specific signaling for HPC and differentiation 
of hematopoietic lines. MiRNA-223 is responsible for the appropriate 
development, and maturation of myeloid progenitors to granulocytic, 
erythroid, as well as monocyte/macrophage lines [103, 105]. 
During macrophage differentiation, miRNA-223 cooperates with 
miRNA-15a/-16 cluster targeting IKK inhibitor gene, which results in 
stimulation of NF-κB signaling pathway [104, 106]. Low miRNA-223 
expression influence limited expansion of HSC progenitors. 
High-level expression of granulocyte-macrophage progenitors (GMP) 
is linked to a deficiency of miRNA-223 in mice [107]. In contrast, the 
progress of human granulopoiesis and progenitor cells differentiation 
is associated with higher expression of this molecule [104, 107]. 
Downregulation of miRNA-223 is an important factor for monocyte 
differentiation [108]. In hematological malignancies, miRNA-223 
in bone marrow seems to be tumor-suppressive molecule [104]. 
MiRNA-223 is involved in neoplastic cells development. This miRNA 
modulates apoptosis by targeting oncogene BCL-2 and insulin 

Table I. Selected miRNAs involvement in hematopoiesis and their targeted genes/cytokines

miRNA Regulation function Gene target Influence on cytokines References

miRNA-15a/-16 Angiogenesis, apoptosis, tumorigenesis IKKα, AKT3, BCL-2, BCL-XL VEGF-A, IL-6 [77-79, 104, 106]

miRNA-126 HSC migration and proliferation, angiogen- 
e sis, apoptosis, tumorigenesis

ZFP91, PHIP, SPRED-1, PIK3R2 VCAM-1, VEGF-A, ANGPT1 [82-88]

miRNA-146a HSC migration, apoptosis, inflammation, 
tumorigenesis

CXCR4, SOD2, IRAK1, TRAF6 SDF-1, TNF-α, IL-1, IL-6, IL-8, MMP-9 [90, 94, 97, 110]

miRNA-223 Granulopoiesis, myelopoiesis, erythroid and 
megakaryocyte differentiation, B-cell devel- 
opment, tumorigenesis, inflammation

NFI-A, IGF-1R, LMO2, IKKα, 
MEF2C, BCL-2, PAX6

IL-17, MMP-2, MMP-9, VEGF-A [103-106, 111]

Genes: IKKα – inhibitors kappa B kinase α; AKT3 – serine/threonine kinase 3; BCL-2 – B-cell lymphoma 2; BCL-XL – B-cell lymphoma – extra large; ZFP91 – zinc finger 
protein 91; PHIP – pleckstrin homology domain interacting protein; SPRED-1 – sprouty-related, EVH1 domain-containing protein; PIK3R2 – phosphoinositide-3-kinase 
regulatory subunit 2; CXCR4 – C-X-C chemokine receptor type 4; SOD2 – superoxide dismutase 2; IRAK1 – interleukin-1 receptor-associated kinase 1; TRAF6 – TNF receptor-
associated factor 6; NFI-A – nuclear factor I A; IGF-1R – insulin-like growth factor 1 receptor; LMO2 – LIM domain only 2; MEF2C – myocyte enhancer factor 2C; PAX6 – paired 
Box 6. Cytokines: VEGF-A – vascular endothelial growth factor A; IL-1/-6/-8/-17 – interleukin; VCAM-1 – vascular cell adhesion molecule 1; ANGPT-1 – angiopoietin 1; SDF-1 
– stromal derived factor 1; TNF-α – tumor necrosis factor α; MMP-2/-9 – matrix metalloproteinase.
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growth factor 1 receptor (IGF-1R) [109]. Upregulated expression of 
miRNA-223 is observed in favorable adult AML risk groups, while in 
B-cell malignancies (diffuse large B-cell lymphoma, Burkitt lymphoma, 
chronic lymphocytic leukemia) expression alterations of this miRNA 
may influence development of lymphoid lineage [102, 105].
We evaluated the kinetics of circulating miRNA-15a, miRNA-16, 
miRNA-126 and miRNA-146a as well as miRNA-223 in the group 
of patients with lymphoproliferative malignancies before autologous 
HSCT and early after transplantation [93]. We observed a 
correlation of miRNA-15a, miRNA-16, miRNA-126 and miRNA-146 
levels assessed directly after conditioning treatment with time to 
engraftment. Moreover, the level of miRNA-15a/16, evaluated 
just after chemotherapy, positively correlated with the ANGPT1/ 
ANGPT2 ratio. Additionally, low levels of miRNA-15a, miRNA-146a, 
and miRNA-223 at the nadir of aplasia were associated with faster 
engraftment [93]. The other interesting observation in our study 
was the correlation of miRNA-146a with MMP-9 level directly after 
chemotherapy and at the nadir of aplasia [93]. Due to a complicated 
network of factors, influencing cytokines and enzymes activity, it is 
not possible to give exact links and detailed pathways of ANGPT1/ 
ANGPT2 regulation by miRNAs. Our results are in line with 
previous reports suggesting that angiogenesis contributes to proper 
hematopoietic stem cell function, including regeneration after injury 
caused by chemotherapy and transplantation.
In conclusion, it is very important to continue exploring factors 
that influence normal and pathological hematopoiesis. A complex 
network of different molecules interplaying together maintains HSCs 
in a quiescent state, takes part in mobilization and homing as well 

as in hematological malignancies. Alterations in the expression of 
miRNAs can affect microenvironment of the myeloid niche, especially 
cytokines levels. MiRNAs should also be studied as potential 
prognostic factors for normal or pathological angiogenesis associated 
with the development and treatment response of the hematological 
malignancies.
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