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Introduction

Hemoglobinopathies are a group of inherited disorders of 
hemoglobin, which result in either structurally abnormal or abridged 
synthesis of beta globin subunits (Fig. 1). A single-nucleotide 
transversion (A>T) in the HBB gene causes the change of glutamic 
acid (Glu) to valine (Val) at the sixth position of its protein, which 
leads to the production of structurally abnormal hemoglobin (HbS). 
HbS facilitates the polymerization of hemoglobin and distorts the 
red blood cells (RBCs) to assume a sickle shape, especially when 
under low oxygen tension and this condition is known as sickle cell 
anemia (SCA) [1]. Abridged or absent synthesis of the beta globin 
chains shows variable outcomes ranging from severe anemia to 
clinically asymptomatic individuals, the disorders being called beta-
thalassemias (b-thalassemias) [2]. Similarly, impaired production of 
alpha globin chains from one, two, three, or all four of the alpha globin 
genes is called as alpha-thalassemia (a-thalassemia). In addition 
to SCA, and the beta and alpha thalassemias, there are several 
documented regional hemoglobinopathies, such as HbC, HbD, HbE, 
and HbO.
The distribution of hemoglobinopathies varies from place to place, 
and much of the global burden of hemoglobinopathies is mainly 
correlated with malaria endemicity [3]. Further, hemoglobin SS 
disease (SCA) is the most common cause of sickle cell disease (SCD) 
and is most prevalent in Africa, Asia, and Mediterranean regions [4]. 
Beta-thalassemia is prevalent in populations of African descent and 
in  regions of the Mediterranean, the Middle East, Transcaucasus, 
Central Asia, Indian subcontinent, and the Far East. Highest 
incidences of beta-thalassemia are found in populations of Cyprus 

(14%), Sardinia (12%), and Southeast Asia [5]. Alpha-thalassemia is 
more common in sub-Saharan Africa, the Mediterranean Basin, the 
Middle East, South Asia, and Southeast Asia [6, 7, 8, 9].
In SCA, the deformed RBCs tend to get stuck in narrow blood 
capillaries and block the blood flow. Patients experience vaso-
occlusive crisis (VOC) in their joints and bones, along with severe 
pain, which causes multiple organ damage (Fig. 2) in SCD patients 
[10]. Further, these patients – in younger age – have increased 
susceptibility to infections, acute chest syndrome, and stroke, while – 
in older age – they are susceptible to retinopathy, as well as damage 
to the lungs, kidney, and heart [11, 12]. In addition to VOC, sickle cell 
patients experience sequestration crisis (pooling of blood in an organ), 
aplastic crisis (reduced function of bone marrow), and hemolytic crisis 
(rapid breakdown of blood cells). Presence of high levels of fetal 
hemoglobin (HbF) inhibits polymerization in SCA patients, highlighting 
the role of HbF (a2g2) in SCD. Although the pathophysiology of SCA 
is well understood, its management mainly depends on supportive 
care. Several lines of evidence show that pharmacological induction 
of HbF helps in the prevention of intracellular sickling, which in turn 
reduces hemolysis and vaso-occlusion. Hydroxyurea (HU) is an 
effective and strong inducer of HbF.

Properties of HU

HU is a ribonucleotide reductase inhibitor that inhibits DNA replication 
in a wide variety of cells. HU is an antimetabolite cytotoxic drug. HU 
has excellent oral bioavailability [13], with a biological half-life of about 
2-4 hours in both children and adults [14, 15]. The elimination of HU 
from the blood is relatively rapid and appears to have an acceptable 
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Fig. 1. Classification of inherited hemoglobin disorders

Fig. 2. Complications of sickle cell anemia
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safety profile, as indicated by lower hepatic and renal toxicity [16]. 
Recent studies have demonstrated the involvement of drug transport 
proteins in the in vivo absorption, cellular distribution, and elimination 
of HU [17]. HU has long been utilized in both human and veterinary 
medicine. Although it was first synthesized in 1869, trials for testing 
the safety of this drug in humans started only after a century [18]. The 
United States Food and Drug Administration (FDA) in 1967 approved 
HU for the treatment of certain solid, myeloid tumors. Further, both the 
US FDA and, in the European Union, the European Medicines Agency 
(EMA) have approved HU for the treatment of SCD in 1998 and 2007, 
respectively. The present review focuses on the clinical benefits of 
HU in SCD and enhances the current understanding of the possible 
mechanisms of benefit for these hemoglobinopathies.

HbF induction

HU has been in use for the treatment of SCD over many years. The 
main rationale behind the usage of HU for the treatment of SCD 
is its ability to induce HbF [19]. The possible cellular and vascular 
effects of HU are depicted in figure 3. Several lines of evidence 
suggest that HU elicits HbF induction and offers clinical benefits 
to SCD patients through a wide range of possible mechanisms 
[20]. The precise mechanism of HbF induction by HU is not fully 

known; however, it is mediated mainly by the redox inactivation 
of a tyrosyl radical on the enzyme ribonucleotide reductase [21]. 
The absorption, distribution, and excretion of HU vary greatly 
among individuals. HU causes intermittent cytotoxic suppression 
of erythroid progenitors and cell stress signaling, which leads to 
recruitment of erythroid progenitors with increased HbF levels 
[22,  23, 24]. HU is also involved in free radical formation, iron 
chelation, activation of soluble guanylyl cyclase, and direct nitric 
oxide (NO) production [25]. HU shows cytotoxic effects and 
reduces the absolute numbers of neutrophils, reticulocytes, and 
platelets in the bone marrow. Reduction of platelets reduces 
inflammation, while reduction of neutrophils and reticulocytes 
reduces the surface expression of adhesion receptors and alters 
the adhesion of RBCs to the endothelium [26].

NO production

NO plays a critical role as a molecular mediator of a variety of 
physiological processes, including vascular tone regulation and 
neurotransmission. NO synthesis results from the action of NO 
synthetase (NOS) on nonessential amino acids, such as arginine, 
and molecular oxygen [27]. Further, this free-radical gas molecule is 
produced in vitro by the oxidation HU by heme groups [28]. Significant 

Fig. 3. Multiple effects of hydroxyurea administration in sickle cell disease patients
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increase in NO-derived species after an oral dose of HU indicates 
NO release from HU in vivo [29]. These observations provide a 
strong argument for the participation of NO in the mechanism of 
HbF induction by HU [30]. Further, NO can promote the modification 
of cysteine 93 in the hemoglobin b-chain, by nitrosation [31] or 
transnitrosation reactions, to form glutathionyl hemoglobin [32], 
which inhibits HbS polymerization [33]. Downregulation of endothelial 
expression of vascular cell adhesion molecule (VCAM)-1 has been 
reported with both NO and HU therapy [34].

Modulation of RBC – endothelial cell 
interactions

VOCs are the acute complications of SCD and are initiated by 
the abnormal adhesion of circulating blood cells to the vascular 
endothelium of the microcirculation. Recent studies have shown 
that various signalling pathways activate erythroid cell adhesion 
molecules (CAMs) and their ligands. The intricate network of 
interactions involving adhesion molecules between sickle RBCs and 
the endothelial vascular wall has been documented [35]. Modulation 
of several cellular biophysical properties upon HU treatment has been 
demonstrated in previous studies [36, 37].

Myelosuppressive effect

Myelosuppression is the dose-limiting effect of HU. Although, 
HU therapy results in limited myelotoxicity in SCD patients [38], it 
decreases the level of reticulocytes, neutrophil count, and the rate of 
crisis [39]. Neutrophils release powerful proinflammatory mediators 
that play an important role in endothelial damage and release of 
cytokines, both of which trigger sickling activity [40]. Hence, both 
neutropenia and neutrophilia have long been reported as markers of 
severity in SCD [41]. Comparison of polymorphonuclear leukocytes 
(PMNs) or neutrophils from normal individuals and sickle cell patients 
has revealed that these cells are less deformable and more rigid in 
sickle cell patients [42]. HU treatment corrected the dysregulated 
neutrophil L-selectin expression in SCD patients [43].

Proof of efficacy

In adults, HU increases the amount of total hemoglobin as well as 
HbF and thereby reduces acute complications, in terms of both 
number and severity [44]. After studying the safety and efficacy of HU 
therapy in patients with SCA, HU has been approved for the treatment 
of adult sickle cell patients [45]. Furthermore, prolonged HU therapy 
in infants with SCA showed sustained hematologic benefits, reduced 
acute coronary syndrome (ACS) events, improved growth, and 
preserved organ function. The Hydroxyurea Safety and Organ Toxicity 
(HUSOFT) extension study revealed that patients who continued 
the HU therapy showed better spleen function than expected and 
improved growth rates [46]. Regeneration of splenic function was also 
demonstrated in adult patients with severe hemoglobin SC disease 
[47]. Many studies used level of HbF induction as a predictor of HU 
therapy. A substantial increase in serum erythropoietin levels has 
been noted, 2–3 weeks after initiation of HU treatment in SCA and 
HbS/beta-thalassemia patients [48].

Attenuation of organ dysfunction

Although there was a great improvement in survival for children with 
SCD, the failure of two or more organ systems is associated with 
morbidity in SCD. Sickle cell patients develop splenic dysfunction early 
(4-6 months of age) in the course of their disease [49]. This raises 
the possibility that HU therapy might be able to exert a significant 
disease-modifying effect in young children with SCD. The efficacy of 
HU in preventing acute complications and organ damage in children 
with SCA was assessed in a Phase III multicenter randomized 
controlled trial of HU (BABY HUG trial). During this trial, 20 mg HU/kg/
day was given to 9- to 18-month-old children with HbSS or sickle b0-
thalassemia for a period of 2 years [50]. The Stroke With Transfusions 
Changing to Hydroxyurea (SWiTCH) trial compared 30 months of 
alternative therapy (hydroxyurea and phlebotomy) with standard 
therapy (transfusions and chelation) in the prevention of secondary 
stroke and reduction of transfusional iron overload [51]. Subsequent 
reports suggest that HU treatment showed clinical efficacy in children 
with variable sickle-related organ damage, including proteinuria [26], 
spleen dysfunction [42], hypoxemia [52], pulmonary hypertension 
[53], glomerular hyperfiltration [54], neurocognitive delay [53], silent 
brain infarcts [41], elevated transcranial Doppler (TCD) velocities, 
and primary stroke [55, 56]. Furthermore, a Belgian multicenter study 
showed a mean hospital stay of 5.3 days in the HU-treated group and 
15.2 days in the placebo group [57].

SCD management with HU

Although there is no cure for SCD, the oral chemotherapeutic drug 
HU is used for ameliorating the disease and improving life expectancy 
for most patients. The randomized BABY HUG trial has demonstrated 
that HU significantly reduces the incidence of VOC and dactylitis in 
young children [50]. There are no universally agreed indications for the 
initiation HU therapy in SCD patients. However, team members must 
review the medical history and discuss the recommendation openly 
with patients and families before initiating HU therapy. The initial 
dosage of HU for adults is 15 mg/kg/day; the dose may be reduced 
further to 10 mg/kg/day in patients with impaired renal function. 
The HUSOFT and BABY HUG trials demonstrated that 20 mg/kg/
day improved hematologic parameters, provided substantial clinical 
benefits, and had an excellent safety profile [58, 59]. Several clinical 
trials have reported good clinical outcomes by using a  “clinically 
effective dose” of 15-20 mg/kg/day [60,  61]. The positive effects 
of HU can be seen within weeks of commencing therapy [62]. The 
primary toxicity observed was neutropenia. When adjusting dosage, 
continuous monitoring of complete blood count (CBC) and absolute 
reticulocyte count (ARC) should be adopted at least every 4 weeks 
[63].
Further study is needed to evaluate the long-term treatment effects 
on growth and development, as well as on kidney, lung, and central 
nervous system function. A randomized, placebo-controlled trial in 
adults did not demonstrate a significant improvement in the time 
to resolution of VOC [64]. Adults with SCD should be evaluated 
for known stroke risk factors and managed according to the 2011 
American Heart Association/American Stroke Association (AHA/
ASA) primary stroke prevention guidelines. HU or bone marrow 
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transplantation is the only option for children at high risk for stroke in 
whom RBC transfusion is contraindicated [65]. HU therapy decreases 
TCD flow velocities [66], and this decrease may be associated with 
decreased turbulent flow and the consequent endothelial damage 
around the stenosis. An open-label pilot study revealed that long-term 
HU therapy improved cerebral oxygen saturation [67]. However, this 
improved oxygen saturation may raise the threshold for infarction by 
augmenting the oxygen reservoir [68]. The BABY HUG trial reported 
that cerebrovascular events occur only in about 10% of SCD children 
taking HU therapy [50]. Hence, HU seems to be a highly useful 
alternative and is relatively free of serious side effects.

Adverse effects of HU

Results of the BABY HUG Trial revealed that HU has an excellent 
safety profile, and side effects of HU therapy in young patients with 
SCD are usually low. As HU causes severe myelosuppression, 
patients should be monitored during treatment for cytopenias very 
carefully, particularly while seeking the maximum tolerated dose 
[69]. In children receiving HU therapy, kidney and liver toxicity 
was not statistically significant compared to the placebo group 
[70]. Further, these groups showed similar rates of cytopenia, 
including severe neutropenia, thrombocytopenia, and anemia with 
reticulocytopenia. Furthermore, a MSH study reported hair loss, skin 
rash, gastrointestinal disturbance, and fever in the HU-treated group, 
but it was not statistically significant compared to the placebo group 
[71]. Cutaneous side effects include nail hyperpigmentation, as well 
as increased skin pigmentation on the palms and soles [72]. Further, 
leg ulceration has been reported as a rare cutaneous manifestation 
of HU therapy in a few studies [73, 74, 75]. Assessment of renal 
function and the pharmacokinetics of HU indicate that the renal 
impairment results in increased systemic exposure and decreased 
urinary recovery of the drug [16]. Some patients receiving HU therapy 
showed mild albuminuria, with an increase in white cells and granular 
casts, as well as occasional red cells, in the urine [76]. However, 
the BABY HUG trial demonstrated that HU is associated with better 
urine-concentrating ability and less renal enlargement, in addition to 
improvement in overall renal function [58]. Studies in animal models 
revealed that HU therapy inhibits spermatogenesis and results in 
hypogonadism [77]. Semen analysis of SCD patients demonstrated 
impaired sperm count, motility, and morphology while taking HU 
therapy [78].
There is increasing concern about the occurrence of malignancy 
or myelodysplasia in patients with SCD on HU therapy [79,  80]. 

Several scattered reports document the malignancy that occurs 
in both children and adults with SCD but do not provide complete 
information on the incidence of various cancer types [81, 82, 
83, 84, 85]. Furthermore, a  multicenter study that assessed the 
risks and benefits for up to 9 years of HU treatment did not show 
development of secondary leukemia in adults [86]. This indicates 
that the carcinogenic potential of HU in clinical settings is much less 
influential. HU is a potent teratogen in all animal species yet tested 
and thus qualifies as a universal teratogen [87]. The teratogenicity 
of HU was demonstrated by documenting various anomalies in the 
central nervous system, palate, as well as the genitourinary, cardiac, 
ocular, and multiple skeletal systems [88, 89, 90]. As very large doses 
(> 250 mg/kg per 24 hours) have been reported as teratogenic, the 
safety of HU therapy in pregnancy remains unclear. Outcome of 
pregnancy with HU treatment in 31 cases revealed that the there 
was no major malformation in the case series with exposure to HU 
[91]. However, this study documented significant rates of intrauterine 
growth retardation (IUGR), fetal death, and prematurity; hence, careful 
follow-ups with physical, biological, and sonographic examination are 
warranted. A follow-up study of the original MSH trial revealed that 
exposure of the fetus to HU does not cause teratogenic changes [92].

Conclusions

HU is available by prescription in oral tablet, capsule, or oral syrup 
form. Dose concentrations of HU vary greatly in sickle cell patients, 
so it is critical to follow the prescription as directed by the doctor in 
order to see assured treatment results. Hence, SCD patients are 
initially treated with HU at 10 or 20 mg/kg and then dose-escalated 
to mild myelosuppression using a standardized regimen. Routine 
blood monitoring should be performed while the patient receives HU 
treatment. Treatment with HU should not be initiated if bone marrow 
function is markedly depressed. Despite the continued and growing 
clinical experience with HU therapy, several important areas call for 
further research to overcome the barriers to HU utilization among 
SCD patients.
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