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Abstract

The significant advances in the efficacy of myeloma treatment in recent years have brought 

greater focus to the issues of long-term therapy complications. Therapy-related myeloid 

neoplasms are among the most severe secondary malignancies that can arise as a 

consequence of myeloma treatment. Although this complication is relatively rare, the 

prognosis for the small subset of patients who experience it is bleak. This review describes 

the incidence, pathogenesis, risk factors, and prognosis of acute myeloid leukemia and 

myelodysplastic neoplasms related to cytotoxic therapy in multiple myeloma patients. 
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Introduction

Emerging from terminally differentiated plasma cells, multiple myeloma (MM) is the second 

most common hematological malignancy worldwide, accounting for c.2% of all cancer 

deaths [1]. Each year in Poland, more than 2,000 people are diagnosed with MM. Recent 

advances in the field of myeloma therapy have led to unprecedented improvements in the 

prognosis for myeloma patients. Overall survival (OS) rates have doubled over the last two 

decades, with median OS exceeding 10 years for standard risk patients [2, 3]. These excellent

results are expected to improve even further, with the widespread implementation of a 

‘quadruplet’ induction regimen (containing an anti-CD38 antibody, a proteasome inhibitor, an

immunomodulatory drug, and steroids) and the introduction of immunotherapy [chimeric 

antigen receptor T-cells (CAR-T) and bispecific antibodies] into earlier lines of treatment [4, 

5]. The obvious consequence of these advances is the increased prevalence of myeloma 

patients in the general population. With longer survival, increasing attention is being paid to 

issues of survivorship, including quality of life and the long-term toxicities of anti-myeloma 

therapies [6, 7]. Among these late effects of treatment, second primary malignancies represent

a group of serious complications, with therapy-related myeloid neoplasms being among the 

most serious. This review focuses on the incidence, risk factors, pathogenesis, and clinical 

implications of secondary myeloid malignancies in patients with multiple myeloma.

Myeloid neoplasms post cytotoxic therapy

Therapy-related acute myeloid leukemia (AML) represents a well-recognized hematopoietic 

stem cell malignant neoplasm which occurs as a late complication of DNA-damaging therapy

administered for prior hematological malignancies, solid tumor or autoimmune disease [8, 9].

Together with myelodysplastic neoplasms post cytotoxic therapy (MDS-pCT) and MDS/ 

myeloproliferative neoplasms post cytotoxic therapy (MDS/MPN-pCT), AML post cytotoxic 

therapy (AML-pCT) constitutes a separate category of myeloid neoplasms post cytotoxic 

therapy (MN-pCT) according to the 2022 World Health Organization (WHO) classification

[10]. The diagnostic criteria of MN-pCT are based on the criteria of AML, MDS and 

MDS/MPN with a previous history of treatment with chemotherapy and/or radiotherapy 

and/or poly-ADP-ribose polymerase 1 inhibitors (PARP1 inhibitors) [11]. Of note, 

methotrexate exposure has been excluded as a qualifying criterion of AML-pCT [10]. 

According to the International Consensus Classification guidelines (2022), AML after 
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cytotoxic therapy should be described with the term “therapy-related” without forming a 

separate category [12]. 

In this review, we will use this latter nomenclature.

The increasing prevalence of therapy-related AML is a result of a growing number of patients

surviving the primary malignancy [13–15]. Therapy-related AML accounts for up to 20% of 

all AML cases, and is generally considered as a subtype with an especially dismal prognosis, 

with estimated OS of 7–10 months [16–18], complete response rates of 30% [19], and shorter

time of response after consolidation therapy than de novo AML [20]. Importantly, the median 

OS within therapy-related myeloid neoplasms patients after allogenic hematopoietic cell 

transplantation (alloHCT) has been estimated to be 14.6 months, with therapy-related MDS 

also associated with a dismal prognosis [21]. Breast cancer (among solid tumors) and non-

Hodgkin’s lymphoma (among hematological neoplasms) represent the most frequent primary 

malignancies preceding therapy-related AML [15]. 

Unique clinical and biological features distinguish therapy-related AML from de novo AML. 

Median age at diagnosis is 61 years [22]. Median time to develop AML after prior cytotoxic 

therapy is 63 months [23] and varies by cytotoxic agent. Prior radiotherapy and/or 

chemotherapy damage not only selectively the tumor cells, but also the DNA of normal cells, 

triggering mutagenic changes. Mutagenic damage is provoked by prior treatment with 

alkylating agents (e.g. melphalan, cyclophosphamide, chlorambucil, busulfan, carboplatin, 

cisplatin, nitrogen mustard, dacarbazine, procarbazine, carmustine, mitomycin, thiotepa, and 

lomustine), topoisomerase II inhibitors (e.g. etoposide, teniposide, doxorubicin, 

daunorubicine, amsacrine, mitoxantron, and actinomycin), radiation therapy, antimetabolites 

(e.g. mycophenolate mofetil, metothrexate, and fludarabine) or antitubuline agents (e.g. 

vinblastine, vincristine, vindesine, paclitaxel, and docetaxel). 

A number of factors have been associated with the poorer prognosis of therapy-related AML: 

unfavorable karyotype, older age, low performance status, exposure to radiotherapy, 

alkylating agents and topoisomerase II inhibitors, the presence of certain mutations, and poor 

bone marrow reserve [24, 25]. It has been estimated that patients who receive chemotherapy 

are at a 4.7-fold increased risk for AML when compared to the general population [14]. 

Moreover, 10 years after chemotherapy exposure, the excess absolute risk of developing 

AML, when compared to the general population, is 5.8/1,000 for non-Hodgkin’s lymphoma 

and 2.15/1,000 for breast cancer [14].

Therapy-related AML is driven by several complex mechanisms including: (a) genome 

instability; (b) pro-inflammatory and pro-leukemic bone marrow environment after exposure 
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to cytotoxic agents; (c) direct induction of a fusion oncogene through chromosomal 

translocation; and (d) selection of pre-existing treatment-resistant hematopoietic cell clones

[26, 27]. Therapy-related AML is characterized by the presence of unfavorable cytogenetic 

abnormalities, complex karyotype and high frequency of TP53, DNMT3A, FLT3, NPM1 and 

NRAS mutations [28, 29]. 

Genes most frequently mutated and involved in the pathogenesis of this entity can be grouped

into different functional classes: (a) transcription regulators (RUNX1, TP53), (b) signaling 

pathways regulators (FLT3), (c) RNA spliceosome machinery regulators (SRSF2, SF3B1, 

U2AF1), and (d) epigenetic regulators (ASXL1, DNMT3A, EZH2, IDH1/IDH2, TET2) [30–

32]. Less frequent mutations involve DNA-damage response genes, requiring work-up for 

germline predisposition.

Management strategy in therapy-related AML should be adjusted to the patient’s medical 

fitness and cumulative toxicity from prior cytotoxic therapy. Importantly, due to a distinct 

pathophysiology compared to de novo AML, therapy-related AML patients are often 

disqualified from clinical trials, making the treatment of this disease even more difficult [29, 

33].

Conventional chemotherapy as an induction regimen in therapy-related AML patients has 

achieved a median OS of 6 months [25]. CPX-351 represents a liposomal drug combination 

of cytarabine and daunorubincin and has been recently approved by the US Food and Drug 

Administration for newly diagnosed therapy-related AML and AML myelodysplasia-related. 

In a randomized phase III trial, in which CPX-351 was compared to a standard chemotherapy

with daunorubicine and cytarabine ‘3+7’, median OS equaled 9.3 and 5.9 months, 

respectively [34]. AlloHCT represents the only curative approach in therapy-related AML. In 

a phase III study, 3-year OS within alloHCT recipients after CPX-351 vs standard 

chemotherapy ‘3+7’ was 56% vs 23%, respectively [35].

Lower-intensity therapies can also be applied in therapy-related AML patients ineligible for 

intensive treatment. Many drugs have been evaluated in this setting, such as azacitidine, 

venetoclax in combination with azacytidine, decitabine, venetoclax on its own, low-dose 

cytarabine, nivolumab, dasatinib, aprenetapopt, magrolimab, and flotetuzumab [36–44].

Incidence and risk factors of therapy-related myeloid neoplasms in patients with 

multiple myeloma
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Firstly, it is worth noting that the risk of myeloproliferative neoplasms, MDS or AML is 

increased even in individuals with monoclonal gammopathy of undetermined significance 

(MGUS), irrespective of eventual progression to overt MM or subsequent treatment. 

A Swedish register study reported an 8-fold increased risk of myeloid malignancies for 

people with MGUS compared to the general population [45]. This increased risk, although at 

a lower magnitude and predominantly for MDS, was also seen in a large MGUS screening 

study performed at the Mayo Clinic [46]. This suggests a possible role of intrinsic factors 

associated with immune alterations present even in premalignant plasma cell disorders [47]. 

Importantly, the risk of MDS/AML was higher in individuals with MGUS with a monoclonal 

protein concentration over 1.5 g/dl. 

The first case report on the development of AML in four patients treated for myeloma was 

presented more than 50 years ago [48]. Since then, much has changed in the MM treatment 

paradigm, which is also reflected in the changing rates of therapy-related myeloid neoplasms.

Population-based studies conducted prior to the introduction of immunomodulatory agents 

(IMiDs) documented standardized incident rates for therapy-related MDS /AML ranging 

from 6.5 to 8.5 [49, 50]. Notably, the risk of AML decreased from a 12-fold excess in patients

diagnosed in 1973-77, to a 4-fold excess among those diagnosed in 2000-2008 [51]. A recent 

population-based study, utilizing the SEER (Surveillance, Epidemiology, and End Results) 

database, showed that median time from myeloma diagnosis to therapy-related AML equaled 

56 months. The same study assessed the incidence of therapy-related AML in the novel 

agents era (2003–2018) to be 0.15%, compared to 0.26% in the previous period (1975–2002)

[52]. This reduction is attributed to the decline in prolonged use of alkylating agents (i.e. 

melphalan) in first line therapy. Risks associated with exposure to particular anti-myeloma 

drugs are discussed in the next section.

It is hypothesized that a significant proportion of the therapy-related myeloid neoplasms 

emerge in the context of clonal hematopoiesis of indeterminate significance (CHIP) [53, 54]. 

CHIP refers to recurrent somatic mutations, present usually in a small fraction of cells 

detected in the peripheral blood of otherwise healthy individuals [55]. It is associated with a 

0.5–1% risk of progression to AML or MDS and higher all-cause mortality, attributed mostly 

to the increased risk of cardiovascular events. CHIP incidence increases with age, and it is 

present in more than 10% of individuals older than 70 [56]. In the context of cytotoxic 

therapy, hematopoietic stem cells harboring clonal hematopoiesis (CH) mutations may gain a 
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survival advantage that leads to expansion of these clones [57]. Those with particularly 

deleterious mutations such as TP53 or PPM1D may further evolve into myeloid neoplasms 

with confirmed clonal relationship or help shape the genomic microenvironment to promote 

leukemogenesis [58]. That being said, the impact of CH on the risk of therapy-related 

myeloid neoplasms among patients with multiple myeloma is not yet fully understood. 

As myeloma affects predominantly older patients, CH is very common, detected in 20–30% 

of patients in this population at diagnosis [59]. However, this high incidence is not only age-

dependent, as MM can drive CH through interplay with the bone marrow microenvironment

[60]. The biggest analysis published to date, by Mouhieddine et al., evaluated CH among 629

patients treated with autologous hematopoietic stem cell transplantation (autoSCT) [59]. CH 

was detected in 21.6% of patients and was associated with impaired stem cell mobilization. 

Similarly to other studies, the most frequently mutated genes included DNMT3A, TET2, 

TP53, and ASXL1. Intriguingly, the presence of CH correlated with inferior OS and 

progression-free survival (PFS), but only in patients who had not received lenalidomide-

based maintenance. Notably, rates of therapy-related MDS/AML did not differ between 

patients harboring CH clones and those without them. Similarly, there is contradictory data 

regarding the potential evolution of preleukemic clones after autoSCT. Some studies have 

confirmed the clonal relationship between CH and subsequent myeloid neoplasms, whereas 

others have not [61, 62]. Future studies are needed to  establish the impact of CH, likely with 

a distinction between different mutated genes, on the risk of therapy-related myeloid 

neoplasms in multiple myeloma. 

Impact of specific antimyeloma treatment on risk of therapy-related myeloid neoplasms

Two classes of drugs routinely used in myeloma therapy are associated with an increased risk

of therapy-related myeloid neoplasms: alkylators (i.e. melphalan) and IMiDs (i.e. 

lenalidomide). Other widely used anti-myeloma drugs, such as proteasome inhibitors and 

anti-CD38 antibodies, do not appear to increase this risk. Rates of therapy-related MDS and 

AML in the key studies of modern agents are set out in Table I. 

The alkylating action of melphalan, directly affecting not only malignant myeloma cells, but 

also hematopoietic stem cells, is responsible for the increased incidence of myeloid 

malignancies associated with the use of this drug [63]. A specific mutational signature, 
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characteristic for melphalan exposure, has recently been described in myeloma patients [64]. 

Historical data clearly shows that prolonged use of melphalan is associated with a high 

incidence of AML, reaching 17% at 50 months [65]. This has been further confirmed by 

recent data from phase III randomized clinical trials. In the FIRST trial, which enrolled 

transplant-ineligible patients with newly-diagnosed multiple myeloma, patients assigned to a 

control arm with melphalan-prednisone-thalidomide (MPT) experienced much higher rates of

therapy-related myeloid neoplasms than did those randomized to lenalidomide-based, 

melphalan-free arms (14/541 vs. 3/532 vs. 2/540; [66]). Importantly, the incidence of therapy-

related MDS and AML in this population remains low with the addition of daratumumab to 

the lenalidomide and dexamethasone backbone, as recently shown by the MAIA trial (1/364;

[67]). Currently, melphalan use is mostly restricted to the high dose therapy preceding 

autoSCT. With such short exposure, the mutagenic impact of melphalan does not appear to be

deleterious. In a Center for International Blood and Marrow Transplant Research registry 

analysis, which included 4,566 patients transplanted between 1995 and 2010 (who would not 

be expected to have received lenalidomide maintenance) the cumulative 10-year incidence of 

AML or MDS equaled 3% [68]. A study of the California Cancer Registry showed a 1.3% 

absolute increase in therapy-related myeloid malignancies for myeloma patients who had 

received autoSCT compared to those who had not, corresponding to a hazard ratio of 1.51

[69]. In the randomized phase III IFM-2009 study of lenalidomide, bortezomib, 

dexamethasone with or without autoSCT in newly diagnosed multiple myeloma, the 

incidence of therapy-related MDS/AML was numerically higher in the transplant group 

(5/350) than in the non-transplant group (2/350) [70]. The same observation was confirmed in

the similarly designed DETERMINATION trial, where no myeloid malignancies were 

reported in the non-transplant group compared to 10/365 patients treated in the autoSCT arm

[71].

Lenalidomide maintenance after autoSCT is the current standard of care for eligible patients. 

In the pivotal phase III trials that established lenalidomide’s role in the post-transplant setting,

the rates of myeloid malignancies were higher in the treatment arms than in the placebo 

groups [72–74]. This was further confirmed in the meta-analysis of these trials, with a hazard 

ratio for secondary hematologic malignancies equaling 2.03 in the lenalidomide group [75]. 

Interesting data on therapy-related myeloid neoplasms after lenalidomide maintenance was 

recently published as a secondary analysis of the Myeloma XI study [76]. In this large, phase 

III randomized trial, lenalidomide was used as induction and maintenance in both transplant-
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eligible and transplant-ineligible patients with newly diagnosed MM. The study evaluated 

2,532 patients in the transplant-eligible group and 1,825 in the transplant-ineligible group. 

Rates of therapy-related myeloid neoplasms after c.50 months of follow-up were relatively 

small. Sixteen cases of therapy-related MDS/AML were reported in transplant-eligible 

patients who received lenalidomide, compared to only one case among those patients who did

not receive lenalidomide. In the transplant-ineligible group, the respective numbers of cases 

equaled five and one. 

These observations add an important piece to the jigsaw of what is currently known about the

risk of therapy-related myeloid neoplasms after autoSCT and lenalidomide maintenance. The 

risk is undoubtedly increased, but fortunately this complication remains very rare. 

Nevertheless, for patients on lenalidomide maintenance, International Myeloma Working 

Group experts recommend a low threshold for conducting a careful bone marrow 

examination in cases of unexplained cytopenias [77]. 

The mechanisms of leukemogenesis after lenalidomide exposure are probably multifactorial. 

The immunomodulatory effect of this drug may play an important role [78], but another 

interesting mechanism has recently been described [79]. Lenalidomide causes degradation of 

the essential transcription factors IKZF1 and IKZF3. Unlike pomalidomide, which has not 

been associated with an increased risk of myeloid malignancies, lenalidomide also promotes 

the degradation of CK1α. Suppression of CK1 induces p53-mediated apoptosis. Therefore, 

lenalidomide treatment may select TP53 mutated clones which possess a survival advantage 

over normal hematopoietic stem cells in the setting of lenalidomide exposure. This 

explanation is in line with the hypothesis regarding the development of therapy-related 

myeloid neoplasms in the context of CH.

Among the most promising therapeutic agents recently approved for the treatment of multiple

myeloma are CAR-T and bispecific antibodies [80]. Given the relatively short period of 

observation with these novel types of immunotherapies, it is difficult to assess their impact on

the risk of developing therapy-related myeloid neoplasms. In the pivotal CARTITUDE-1 

study of the anti-BCMA CAR-T cilta-cel, AML or MDS were reported in 9/97 evaluated 

patients, raising concerns about potential harm associated with this type of therapy [81]. 

Nevertheless, this was a heavily pretreated population, experiencing unprecedented survival. 

This is why, with a phase II single arm design, it was impossible to assess the direct impact of

the CAR-T product on the observed incidence of therapy-related AML or MDS. Reassuringly,
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results from phase III studies of both approved anti-BCMA CAR-T products (cilta-cel and 

ide-cel) did not show any worrying sign of an increased incidence of myeloid malignancies 

among patients who received CAR-T compared to the standard of care [4, 82]. Phase II 

studies of the approved bispecific antibodies (elranatamab, teclistamab, talquetamab) did not 

report any cases of secondary malignancies [83–85]. Longer follow up is definitely needed to

thoroughly assess the risk of therapy-related AML or MDS associated with these novel 

immunotherapies. However, at the moment, it appears safe to say that the risk-to-benefit ratio

is favorable.

Outcomes

It is very important to underscore that even considering the numerically higher incidence of 

therapy-related myeloid neoplasms after autoSCT or lenalidomide maintenance, the benefits 

of these treatment modalities clearly outweigh the risks. 

In particular, the OS benefit associated with lenalidomide maintenance is not negated by the 

impact of secondary malignancies. Risk of death from myeloma progression is higher than 

any other competing risk, even among patients with long remission after autoSCT [86]. Yet 

that being said, unfortunately the prognosis of MM patients with therapy-related MDS/AML 

remains dismal. Therapy-related myeloid neoplasms in the course of multiple myeloma are 

not exempt from the general characteristics of this group of malignancies. Patients often 

present with the features of high risk disease, including TP53 mutations and complex 

karyotype [87, 88]. Recent retrospective analyses from the Mayo Clinic and the MD 

Anderson Cancer Center have shown a median OS in these patients of only 12 months, with 

similar survival for AML and MDS [87, 88]. Slightly better results were seen in alloHCT 

recipients, although long-term remissions were achieved in only a small subset of patients.

Conclusions

Therapy-related myeloid malignancies are very rare complications of myeloma therapy. 

However, when individual cases occur, the diagnosis can be devastating, with very few 

effective treatment options. Currently, there is no justification to change treatment based 
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solely on the risk of myeloid malignancies. Physicians should remain alert to the possibility 

of this complication, and thoroughly evaluate cytopenias in patients with multiple myeloma. 

Hopefully, in the future, with an increasing understanding of the biology of therapy-related 

myeloid neoplasms, we will be able to better assess the individual risk of this complication 

and potentially tailor therapy to minimize it in selected cases.
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Phas
e

Design Treatment arm
Group
count

Median F-U
SPM

Overall

Hematological SPM
Ref.

AML MDS Other

Determination
NCT01208662

III
NDMM TE: RVd vs. RVd + 
ASCT with R maintenance in
both arms

RVd 357
76 months

44 0 0
ALL — 7
CLL — 1
CML — 1

[71]

RVd + ASCT 365 44 4 6 ALL — 3

IFM2009
NCT01191060

III

NDMM TE: RVd vs. RVd + 
ASCT with one year of R 
maintenance in both arms

RVd 350

44 months

26 1 1 0 [70]

RVd + ASCT 350 31 4 1 0

CALBG 100104 
NCT00114101

III
NDMM TE: R maintenance 
or placebo following ASCT

R 231
91
months

31 6 5
ALL — 6
HL — 1

WM — 1

[89]

Placebo crossover to R 86 8 0 1 ALL — 2

Placebo no crossover 143 4 0 0 0

IFM2005-02
NCT00430365

III
NDMM TE: R maintenance 
or placebo following ASCT

R 306
45 months

26 AML or MDS 5
ALL — 3
HL — 4

NHL — 1

[74]

Placebo 302 11 AML or MDS 4 NHL — 1

Myeloma XI
NCT01554852

III NDMM TE and TNE:
R used at induction and 
maintenance

TE no R exposure
701 55 months 

for TE

46 months 
for TNE 

11 0 1 DLBCL — 1 [76]

TE single R exposure
1263

36 1 5 ALL — 1

TE double R exposure
568

47 4 6

DLBCL — 2
BL — 1

CML — 1
HL — 1

TNE no R exposure
677

18 1 0 0

TNE single R exposure
899

60 2 1 0

TNE double R exposure 260 47 1 1 Acute
leukemia
(mixed

phenotype) —

17



1

First
NCT00689936

III NDMM TNE: Rd vs. MPT

Rd until progression 532

67 months

36 1 2 ALL — 1 [66]

Rd for 72 weeks 540 38 1 1 0

MPT for 72 weeks 541 46 5 5
MDS/AML —

4

MAIA
NCT02252172

III NDMM TNE: DRd vs. Rd

DRd
364

56 months
74 1 N.R.

NHL — 2
DLBCL — 2

MCL — 1

[67]

Rd 365 46 0 N.R.
DLBCL — 1

ALL — 1
CARTITUDE-1
NCT03548207

I/IIb RRMM: Cilta-cel Cilta-cel
97

28 months 20 3 6 NHL — 1 [81]

CARTITUDE-4 III

RRMM: Cilta-cel vs. PVd or 
DPd

Cilta-cel 208

16 months

9 1 1 NHL — 1 [4]

PVd/DPd 208 14 0 0 0

KarMMa-3
NCT03651128

III RRMM: Ide-cel vs. SOC 
Ide-cel 225

19 months 13
1 3 0

[82]

SOC 126 5 0 0 0
Table I. Summary of incidence of myeloid neoplasms reported in key studies of novel agents

ALL — acute lymphoblastic leukemia; AML — acute myeloid leukemia; ASCT — autologous stem cell transplantation; BL — Burkitt’s lymphoma; Cilta-cel — 
ciltacabtagene autoleucel; CLL — chronic lymphocytic leukemia; CML — chronic myelogenous leukemia; DLBCL — diffuse large B-cell lymphoma; DPd — 
daratumumab, pomalidomide, dexamethasone; DRd — daratumumab, lenalidomide, dexamethasone; F-U — follow up; Ide-cel — idecabtagene vicleucel; MCL — mantle 
cell lymphoma; MDS — myelodysplastic neoplasms; MPT — melphalan, prednisone, thalidomide; NDMM — newly diagnosed multiple myeloma; NHL — non-Hodgkin’s 
lymphoma; N.R. — not reported; pCT — post-cytotoxic therapy; PVd — pomalidomide, bortezomib, dexamethasone; R — lenalidomide; Rd — lenalidomide, 
dexamethasone; RRMM — relapsed/refractory multiple myeloma; RVd — lenalidomide, bortezomib, dexamethasone; sAML — secondary acute myeloid leukemia; sMDS 
— secondary myelodysplastic syndrome; SOC — standard of care; TE — transplant-eligible; TNE — transplant non-eligible; WM — Waldenström’s macroglobulinemia
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