English Polski
Vol 29, No 2 (2023)
Guidelines / Expert consensus
Published online: 2023-08-04

open access

Page views 1488
Article views/downloads 2787
Get Citation

Connect on Social Media

Connect on Social Media

Kompleksowa opieka nad pacjentem z chorobą naczyń obwodowych tętnic i żył — rekomendacje zespołu ekspertów 2023

Arkadiusz Jawień1, Krzysztof J. Filipiak23, Adrian Doroszko4, Tomasz Dzieciątkowski5, Zbigniew Krasiński6, Filip M. Szymański7, Piotr Terlecki8
Acta Angiologica 2023;29(2):1-60.

Abstract

Not available

Article available in PDF format

View PDF Download PDF file

References

  1. Schulman S, Sholzberg M, Spyropoulos AC, et al. International Society on Thrombosis and Haemostasis. ISTH guidelines for antithrombotic treatment in COVID-19. J Thromb Haemost. 2022; 20(10): 2214–2225.
  2. Charfeddine S, Ibnhadjamor H, Jdidi J, et al. Sulodexide Significantly Improves Endothelial Dysfunction and Alleviates Chest Pain and Palpitations in Patients With Long-COVID-19: Insights From TUN-EndCOV Study. Front Cardiovasc Med. 2022; 9: 866113.
  3. Jebari-Benslaiman S, Galicia-García U, Larrea-Sebal A, et al. Pathophysiology of Atherosclerosis. Int J Mol Sci. 2022; 23(6).
  4. Milusev A, Rieben R, Sorvillo N. The Endothelial Glycocalyx: A Possible Therapeutic Target in Cardiovascular Disorders. Front Cardiovasc Med. 2022; 9: 897087.
  5. Mitra R, O'Neil GL, Harding IC, et al. Glycocalyx in Atherosclerosis-Relevant Endothelium Function and as a Therapeutic Target. Curr Atheroscler Rep. 2017; 19(12): 63.
  6. Cunningham KS, Gotlieb AI. The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest. 2005; 85(1): 9–23.
  7. Banerjee S, Mwangi J, Stanley T, et al. Regeneration and Assessment of the Endothelial Glycocalyx To Address Cardiovascular Disease. Industrial & Engineering Chemistry Research. 2021; 60(48): 17328–17347.
  8. Conte MS, Bradbury AW, Kolh P, et al. GVG Writing Group for the Joint Guidelines of the Society for Vascular Surgery (SVS), European Society for Vascular Surgery (ESVS), and World Federation of Vascular Societies (WFVS). Global Vascular Guidelines on the Management of Chronic Limb-Threatening Ischemia. Eur J Vasc Endovasc Surg. 2019; 58(1S): S1–S109.e33.
  9. Cao P, Eckstein HH, De Rango P, et al. Chapter II: Diagnostic methods. Eur J Vasc Endovasc Surg. 2011; 42 Suppl 2: S13–S32.
  10. Dabrh AA, Steffen M, Undavalli C, et al. The natural history of untreated severe or critical limb ischemia. J Vasc Surg. 2015; 62(6): 1642–1651.e3.
  11. Anderson L, Oldridge N, Thompson DR, et al. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst Rev. 2016; 2016(1): CD001800–12.
  12. Bhupathiraju SN, Tucker KL. Coronary heart disease prevention: nutrients, foods, and dietary patterns. Clin Chim Acta. 2011; 412(17-18): 1493–1514.
  13. Iftikhar O, Oliveros K, Tafur AJ, et al. Prevention of Femoropopliteal In-Stent Restenosis With Cilostazol: A Meta-Analysis. Angiology. 2016; 67(6): 549–555.
  14. Iida O, Yokoi H, Soga Y, et al. STOP-IC investigators. Cilostazol reduces angiographic restenosis after endovascular therapy for femoropopliteal lesions in the Sufficient Treatment of Peripheral Intervention by Cilostazol study. Circulation. 2013; 127(23): 2307–2315.
  15. Miyashita Y, Saito S, Miyamoto A, et al. Cilostazol increases skin perfusion pressure in severely ischemic limbs. Angiology. 2011; 62(1): 15–17.
  16. Bedenis R, Stewart M, Cleanthis M, et al. Cilostazol for intermittent claudication. Cochrane Database Syst Rev. 2014.
  17. Soga Y, Iida O, Hirano K, et al. Impact of cilostazol after endovascular treatment for infrainguinal disease in patients with critical limb ischemia. J Vasc Surg. 2011; 54(6): 1659–1667.
  18. Soga Y, Takahara M, Iida O, et al. Efficacy of CilostAzol for Below-the-Knee Artery Disease after Balloon AnGioplasty in PatiEnts with Severe Limb Ischemia (CABBAGE Trial). Ann Vasc Surg. 2017; 45: 22–28.
  19. Steinhubl SR, Berger PB, Mann JT, et al. CREDO Investigators. Clopidogrel for the Reduction of Events During Observation. Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial. JAMA. 2002; 288(19): 2411–2420.
  20. Smith FB, Bradbury A, Fowkes G, et al. Intravenous naftidrofuryl for critical limb ischaemia. Cochrane Database Syst Rev. 2000; 2012(2): CD002070.
  21. Saw J, Bhatt DL, Moliterno DJ, et al. The influence of peripheral arterial disease on outcomes: a pooled analysis of mortality in eight large randomized percutaneous coronary intervention trials. J Am Coll Cardiol. 2006; 48(8): 1567–1572.
  22. Piaggesi A, Abbruzzese L, Mattaliano C, et al. Sulodexide as Adjunctive Therapy in Diabetic Foot Patients With Critical Limb Ischemia Treated With Percutaneous Transluminal Angioplasty. Int J Low Extrem Wounds. 2014; 13(2): 103–109.
  23. Ruffolo AJ, Romano M, Ciapponi A. Prostanoids for critical limb ischaemia. Cochrane Database Syst Rev. 2010(1): CD006544.
  24. Vietto V, Franco JVa, Saenz V, et al. Prostanoids for critical limb ischaemia. Cochrane Database Syst Rev. 2018; 1(1): CD006544.
  25. Knefel G, et al. Podstawy hiperbarycznej terapii tlenowej: Leczenie Ran. 2006;T3 z. ; 3: 83–93.
  26. Szymańska B, Knefel G, Kawecki M. Kliniczne aspekty hiperbarii tlenowej. Wiadomości Lekarskie. 2006;LIX:1–2.
  27. Kranke P, Bennett MH, Martyn-St James M, et al. Hyperbaric oxygen therapy for chronic wounds. Cochrane Database Syst Rev. 2012; 2015(4): CD004123.
  28. Löndahl M, Fagher K, Katzman P. What is the role of hyperbaric oxygen in the management of diabetic foot disease? Curr Diab Rep. 2011; 11(4): 285–293.
  29. Abidia A, Laden G, Kuhan G, et al. The role of hyperbaric oxygen therapy in ischaemic diabetic lower extremity ulcers: a double-blind randomised-controlled trial. Eur J Vasc Endovasc Surg. 2003; 25(6): 513–518.
  30. Faglia E, Favales F, Aldeghi A, et al. Adjunctive systemic hyperbaric oxygen therapy in treatment of severe prevalently ischemic diabetic foot ulcer. A randomized study. Diabetes Care. 1996; 19(12): 1338–1343.
  31. Murad M, Altayar O, Bennett M, et al. Using GRADE for evaluating the quality of evidence in hyperbaric oxygen therapy clarifies evidence limitations. J Clin Epidemiol. 2014; 67(1): 65–72.
  32. Baumgartner I, Chronos N, Comerota A, et al. Local gene transfer and expression following intramuscular administration of FGF-1 plasmid DNA in patients with critical limb ischemia. Mol Ther. 2009; 17(5): 914–921.
  33. Darling J, McCallum J, Curran T, et al. RR20. Consequences of Failed Tibial Endovascular Intervention. J Vasc Surg. 2014; 59(6).
  34. Belch J, Hiatt WR, Baumgartner I, et al. TAMARIS Committees and Investigators. Effect of fibroblast growth factor NV1FGF on amputation and death: a randomised placebo-controlled trial of gene therapy in critical limb ischaemia. Lancet. 2011; 377(9781): 1929–1937.
  35. Powell RJ, Marston WA, Berceli SA, et al. Cellular therapy with Ixmyelocel-T to treat critical limb ischemia: the randomized, double-blind, placebo-controlled RESTORE-CLI trial. Mol Ther. 2012; 20(6): 1280–1286.
  36. Powell RJ, Simons M, Mendelsohn FO, et al. Results of a double-blind, placebo-controlled study to assess the safety of intramuscular injection of hepatocyte growth factor plasmid to improve limb perfusion in patients with critical limb ischemia. Circulation. 2008; 118(1): 58–65.
  37. Shigematsu H, Yasuda K, Iwai T, et al. Randomized, double-blind, placebo-controlled clinical trial of hepatocyte growth factor plasmid for critical limb ischemia. Gene Ther. 2010; 17(9): 1152–1161.
  38. Murphy M, Ross C, Kibbe M, et al. Administration of autologous bone marrow cells for limb salvage in patients with critical limb ischemia: results of the multi- center phase III MOBILE trial. New Orleans, La: American Heart Association Scientific Sessions. : 2016.
  39. Murphy MP, Lawson JH, Rapp BM, et al. Autologous bone marrow mononuclear cell therapy is safe and promotes amputation-free survival in patients with critical limb ischemia. J Vasc Surg. 2011; 53(6): 1565–15674.e1.
  40. Losordo D, Kibbe M, Mendelsohn F, et al. A Randomized, Controlled Pilot Study of Autologous CD34+ Cell Therapy for Critical Limb Ischemia. Circ Cardiovasc Interv. 2012; 5(6): 821–830.
  41. Pignon B, Sevestre MA, Kanagaratnam L, et al. Autologous Bone Marrow Mononuclear Cell Implantation and Its Impact on the Outcome of Patients With Critical Limb Ischemia - Results of a Randomized, Double-Blind, Placebo-Controlled Trial. Circ J. 2017; 81(11): 1713–1720.
  42. Iafrati MD, Hallett JW, Geils G, et al. Early results and lessons learned from a multicenter, randomized, double-blind trial of bone marrow aspirate concentrate in critical limb ischemia. J Vasc Surg. 2011; 54(6): 1650–1658.
  43. Teraa M, Sprengers RW, Schutgens REG, et al. Effect of repetitive intra-arterial infusion of bone marrow mononuclear cells in patients with no-option limb ischemia: the randomized, double-blind, placebo-controlled Rejuvenating Endothelial Progenitor Cells via Transcutaneous Intra-arterial Supplementation (JUVENTAS) trial. Circulation. 2015; 131(10): 851–860.
  44. Cook AW, Oygar A, Baggenstos P, et al. Vascular disease of extremities. Electric stimulation of spinal cord and posterior roots. N Y State J Med. 1976; 76(3): 366–368.
  45. Frank U, Nikol S, Belch J, et al. ESVM Guideline on peripheral arterial disease. Vasa. 2019; 48(Suppl 102): 1–79.
  46. Zaag ESv, Legemate DA, Prins MH, et al. Angioplasty or Bypass for Superficial Femoral Artery Disease? A Randomised Controlled Trial. Eur J Vasc Endovasc Surg. 2004; 28(2): 132–137.
  47. Chiu KWH, Davies RSM, Nightingale PG, et al. Review of direct anatomical open surgical management of atherosclerotic aorto-iliac occlusive disease. Eur J Vasc Endovasc Surg. 2010; 39(4): 460–471.
  48. Bredahl K, Jensen LP, Schroeder TV, et al. Mortality and complications after aortic bifurcated bypass procedures for chronic aortoiliac occlusive disease. J Vasc Surg. 2015; 62(1): 75–82.
  49. Aboyans V, Ricco JB, Bartelink ML, et al. [2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS)]. Kardiol Pol. 2017; 75(11): 1065–1160.
  50. Abu Dabrh AM, Steffen MW, Asi N, et al. Bypass surgery versus endovascular interventions in severe or critical limb ischemia. J Vasc Surg. 2016; 63(1): 244–53.e11.
  51. Albers M, Romiti M, Brochado-Neto FC, et al. Meta-analysis of alternate autologous vein bypass grafts to infrapopliteal arteries. J Vasc Surg. 2005; 42(3): 449–455.
  52. Conte MS, Pomposelli FB, Clair DG, et al. Society for Vascular Surgery Lower Extremity Guidelines Writing Group, Society for Vascular Surgery. Society for Vascular Surgery practice guidelines for atherosclerotic occlusive disease of the lower extremities: management of asymptomatic disease and claudication. J Vasc Surg. 2015; 61(3 Suppl): 2S–41S.
  53. Kontopodis N, Lioudaki S, Chronis C, et al. The Use of the Profunda Femoral Artery as the Sole Target Vessel to Bypass Aortoiliac Disease in Patients with Critical Limb Ischemia and Concomitant Unreconstructable Infrainguinal Disease. Ann Vasc Surg. 2018; 48: 45–52.
  54. Antoniou GA, Chalmers N, Georgiadis GS, et al. A meta-analysis of endovascular versus surgical reconstruction of femoropopliteal arterial disease. J Vasc Surg. 2013; 57(1): 242–253.
  55. Okuno S, Iida O, Iida T, et al. Comparison of Clinical Outcomes between Endovascular Therapy with Self-Expandable Nitinol Stent and Femoral-Popliteal Bypass for Trans-Atlantic Inter-Society Consensus II C and D Femoropopliteal Lesions. Ann Vasc Surg. 2019; 57: 137–143.
  56. Sanni A, Hamid A, Dunning J. Is sympathectomy of benefit in critical leg ischaemia not amenable to revascularisation? Interact Cardiovasc Thorac Surg. 2005; 4(5): 478–483.
  57. Selvin E, Marinopoulos S, Berkenblit G, et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med. 2004; 141(6): 421–431.
  58. Karam J, Shepard A, Rubinfeld I. Predictors of operative mortality following major lower extremity amputations using the National Surgical Quality Improvement Program public use data. J Vasc Surg. 2013; 58(5): 1276–1282.
  59. Ali MM, Loretz L, Shea A, et al. A contemporary comparative analysis of immediate postoperative prosthesis placement following below-knee amputation. Ann Vasc Surg. 2013; 27(8): 1146–1153.
  60. Setacci C, de Donato G, Teraa M, et al. Chapter IV: Treatment of critical limb ischaemia. Eur J Vasc Endovasc Surg. 2011; 42 Suppl 2: S43–S59.
  61. Zlatanovic P, Mahmoud AA, Cinara I, et al. Comparison of Long Term Outcomes After Endovascular Treatment Versus Bypass Surgery in Chronic Limb Threatening Ischaemia Patients with Long Femoropopliteal Lesions. Eur J Vasc Endovasc Surg. 2021; 61(2): 258–269.
  62. Goode SD, Cleveland TJ, Gaines PA, et al. STAG trial collaborators. Randomized clinical trial of stents versus angioplasty for the treatment of iliac artery occlusions (STAG trial). Br J Surg. 2013; 100(9): 1148–1153.
  63. Grimme FA, Goverde PC, Verbruggen PJ, et al. Editor’s choiced first results of the covered endovascular reconstruction of the aortic bifurcation (CERAB) technique for aortoiliac occlusive disease. Eur J Vasc Endovasc Surg. 2015; 50(5): 638–647.
  64. Aihara H, Soga Y, Mii S, et al. RECANALISE Registry Investigators. Comparison of long-term outcome after endovascular therapy versus bypass surgery in claudication patients with Trans-Atlantic Inter-Society Consensus-II C and D femoropopliteal disease. Circ J. 2014; 78(2): 457–464.
  65. Kasapis C, Henke PK, Chetcuti SJ, et al. Routine stent implantation vs. percutaneous transluminal angioplasty in femoropopliteal artery disease: a meta-analysis of randomized controlled trials. Eur Heart J. 2009; 30(1): 44–55.
  66. Aboyans V, Ricco JB, Bartelink ML, et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteriesEndorsed by: the European Stroke Organization (ESO)The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur Heart J ;39(9):763-816. 2018; 39(9): 763–816.
  67. Gerhard-Herman MD, Gornik HL, Barrett C, et al. Correction to: 2016 AHA/ACC Guideline on the Management of Patients With Lower Extremity Peripheral Artery Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2017; 135(12): 791–792.
  68. Lane R, Ellis B, Watson L, et al. Exercise for intermittent claudication. Cochrane Database Syst Rev. 2014(7): CD000990.
  69. Pasek J, Cieślar G, Sieroń A. Combined therapy in the treatment of mixed etiology leg ulcer – case report. Ther Clin Risk Manag. 2018; Volume 14: 1915–1921.
  70. Nicolaides A, Kakkos S, Baekgaard N, et al. Management of chronic venous disorders of the lower limbs. Guidelines According to Scientific Evidence. Part I. Int Angiol. 2018; 37(3): 181–254.
  71. Bergan JJ, Schmid-Schönbein GW, Smith PD, et al. Chronic venous disease. N Engl J Med. 2006; 355(5): 488–498.
  72. Mansilha A, Sousa J. Pathophysiological Mechanisms of Chronic Venous Disease and Implications for Venoactive Drug Therapy. Int J Mol Sci. 2018; 19(6).
  73. Perrin M, Ramelet AA. Pharmacological treatment of primary chronic venous disease: rationale, results and unanswered questions. Eur J Vasc Endovasc Surg. 2011; 41(1): 117–125.
  74. De Maeseneer MG, Kakkos SK, Aherne T, et al. Editor's Choice - European Society for Vascular Surgery (ESVS) 2022 Clinical Practice Guidelines on the Management of Chronic Venous Disease of the Lower Limbs. Eur J Vasc Endovasc Surg. 2022; 63(2): 184–267.
  75. Castro-Ferreira R, Cardoso R, Leite-Moreira A, et al. The Role of Endothelial Dysfunction and Inflammation in Chronic Venous Disease. Ann Vasc Surg. 2018; 46: 380–393.
  76. Kamel M. Pathophysiology of edema in patients with chronic venous insufficiency. Phlebolymphology. 2020; 27(1): 3–10.
  77. Raffetto JD, Khalil RA. Mechanisms of Lower Extremity Vein Dysfunction in Chronic Venous Disease and Implications in Management of Varicose Veins. Vessel Plus. 2021; 5.
  78. Rautio T, Perälä J, Biancari F, et al. Accuracy of hand-held Doppler in planning the operation for primary varicose veins. Eur J Vasc Endovasc Surg. 2002; 24(5): 450–455.
  79. Labropoulos N, Tiongson J, Pryor L, et al. Definition of venous reflux in lower-extremity veins. J Vasc Surg. 2003; 38(4): 793–798.
  80. Mendoza E, Blättler W, Amsler F. Great saphenous vein diameter at the saphenofemoral junction and proximal thigh as parameters of venous disease class. Eur J Vasc Endovasc Surg. 2013; 45(1): 76–83.
  81. Coleridge-Smith P, Labropoulos N, Partsch H, et al. Duplex ultrasound investigation of the veins in chronic venous disease of the lower limbs--UIP consensus document. Part I. Basic principles. Eur J Vasc Endovasc Surg. 2006; 31(1): 83–92.
  82. Arnoldussen CW, de Graaf R, Wittens CHA, et al. Value of magnetic resonance venography and computed tomographic venography in lower extremity chronic venous disease. Phlebology. 2013; 28 Suppl 1: 169–175.
  83. Uhl JF. Three-dimensional modelling of the venous system by direct multislice helical computed tomography venography: technique, indications and results. Phlebology. 2012; 27(6): 270–288.
  84. Helyar VG, Gupta Y, Blakeway L, et al. Depiction of lower limb venous anatomy in patients undergoing interventional deep venous reconstruction-the role of balanced steady state free precession MRI. Br J Radiol. 2018; 91(1082): 20170005.
  85. Kakkos SK, Timpilis M, Patrinos P, et al. Acute Effects of Graduated Elastic Compression Stockings in Patients with Symptomatic Varicose Veins: A Randomised Double Blind Placebo Controlled Trial. Eur J Vasc Endovasc Surg. 2018; 55(1): 118–125.
  86. Mosti G, Cavezzi A, Partsch H, et al. Adjustable Velcro Compression Devices are More Effective than Inelastic Bandages in Reducing Venous Edema in the Initial Treatment Phase: A Randomized Controlled Trial. Eur J Vasc Endovasc Surg. 2015; 50(3): 368–374.
  87. Mosti G, Partsch H. Bandages or Double Stockings for the Initial Therapy of Venous Oedema? A Randomized, Controlled Pilot Study. Eur J Vasc Endovasc Surg. 2013; 46(1): 142–148.
  88. Mosti G, Picerni P, Partsch H. Compression stockings with moderate pressure are able to reduce chronic leg oedema. Phlebology: The Journal of Venous Disease. 2011; 27(6): 289–296.
  89. Mosti G, Partsch H. Occupational leg oedema is more reduced by antigraduated than by graduated stockings. Eur J Vasc Endovasc Surg. 2013; 45(5): 523–527.
  90. Mosti G, Partsch H. Improvement of venous pumping function by double progressive compression stockings: higher pressure over the calf is more important than a graduated pressure profile. Eur J Vasc Endovasc Surg. 2014; 47(5): 545–549.
  91. Ayala Á, Guerra JD, Ulloa JH, et al. Compliance with compression therapy in primary chronic venous disease: Results from a tropical country. Phlebology. 2019; 34(4): 272–277.
  92. Buset CS, Fleischer J, Kluge R, et al. Compression Stocking With 100% Donning and Doffing Success: An Open Label Randomised Controlled Trial. Eur J Vasc Endovasc Surg. 2021; 61(1): 137–144.
  93. Kankam HKN, Lim CS, Fiorentino F, et al. A Summation Analysis of Compliance and Complications of Compression Hosiery for Patients with Chronic Venous Disease or Post-thrombotic Syndrome. Eur J Vasc Endovasc Surg. 2018; 55(3): 406–416.
  94. Lurie F, Schwartz M. Patient-centered outcomes of a dual action pneumatic compression device in comparison to compression stockings for patients with chronic venous disease. J Vasc Surg Venous Lymphat Disord. 2017; 5(5): 699–706.e1.
  95. Riebe H, Konschake W, Haase H, et al. Advantages and disadvantages of graduated and inverse graduated compression hosiery in patients with chronic venous insufficiency and healthy volunteers: A prospective, mono-centric, blinded, open randomised, controlled and cross-over trial. Phlebology. 2018; 33(1): 14–26.
  96. Sippel K, Seifert B, Hafner J. Donning devices (foot slips and frames) enable elderly people with severe chronic venous insufficiency to put on compression stockings. Eur J Vasc Endovasc Surg. 2015; 49(2): 221–229.
  97. Uhl JF, Benigni JP, Chahim M, et al. Prospective randomized controlled study of patient compliance in using a compression stocking: Importance of recommendations of the practitioner as a factor for better compliance. Phlebology. 2018; 33(1): 36–43.
  98. Palfreyman SJ, Michaels JA. A systematic review of compression hosiery for uncomplicated varicose veins. Phlebology. 2009; 24 Suppl 1: 13–33.
  99. Frulla M, Marchiori A, Sartor D, et al. Elastic stockings, hydroxyethylrutosides or both for the treatment of post-thrombotic syndrome. Thromb Haemost. 2017; 93(01): 183–185.
  100. Ginsberg JS, Hirsh J, Julian J, et al. Prevention and treatment of postphlebitic syndrome: results of a 3-part study. Arch Intern Med. 2001; 161(17): 2105–2109.
  101. Vandongen YK, Stacey MC. Graduated Compression Elastic Stockings Reduce Lipodermatosclerosis and Ulcer Recurrence. Phlebology. 2000; 15(1): 33–37.
  102. Allaert FA. Meta-analysis of the impact of the principal venoactive drugs agents on malleolar venous edema. Int Angiol. 2012; 31(4): 310–315.
  103. Benigni JP, Uhl JF, Balet F, et al. Evaluation of three different devices to reduce stasis edema in poorly mobile nursing home patients. Int Angiol. 2018; 37(4): 322–326.
  104. Martinez-Zapata MJ, Vernooij RWm, Simancas-Racines D, et al. Phlebotonics for venous insufficiency. Cochrane Database Syst Rev. 2020; 11(11): CD003229.
  105. Martinez-Zapata MJ, Vernooij RWM, Uriona Tuma SM, et al. Phlebotonics for venous insufficiency. Cochrane Database Syst Rev. 2016; 4(4): CD003229.
  106. Williams KJ, Ravikumar R, Gaweesh AS, et al. A Review of the Evidence to Support Neuromuscular Electrical Stimulation in the Prevention and Management of Venous Disease. Adv Exp Med Biol. 2017; 906: 377–386.
  107. De Maeseneer MG, Kakkos SK, Aherne T, et al. Editor's Choice - European Society for Vascular Surgery (ESVS) 2022 Clinical Practice Guidelines on the Management of Chronic Venous Disease of the Lower Limbs. Eur J Vasc Endovasc Surg. 2022; 63(2): 184–267.
  108. Nicolaides A, Kakkos S, Baekgaard N, et al. Management of chronic venous disorders of the lower limbs. Guidelines According to Scientific Evidence. Part II. Int Angiol. 2020; 39(3): 175–240.
  109. Krasiński Z, Błaszak J, Begier-Krasińska B. Wazoprotekcja układu naczyniowego w świetle aktualnych rekomendacji. Lekarz POZ. 2022; 4: 297–302.
  110. Kakkos SK, Nicolaides AN. Efficacy of micronized purified flavonoid fraction (Daflon®) on improving individual symptoms, signs and quality of life in patients with chronic venous disease: a systematic review and meta-analysis of randomized double-blind placebo-controlled trials. Int Angiol. 2018; 37(2): 143–154.
  111. Wittens C, Davies AH, Bækgaard N, et al. Editor's Choice - Management of Chronic Venous Disease: Clinical Practice Guidelines of the European Society for Vascular Surgery (ESVS). Eur J Vasc Endovasc Surg. 2015; 49(6): 678–737.
  112. Biemans A, Kockaert M, Akkersdijk G, et al. Comparing endovenous laser ablation, foam sclerotherapy, and conventional surgery for great saphenous varicose veins. J Vasc Surg. 2013; 58(3): 727–734.e1.
  113. Eklof Bo, Perrin M, Delis KT, et al. American Venous Forum, European Venous Forum, International Union of Phlebology, American College of Phlebology, International Union of Angiology. Updated terminology of chronic venous disorders: the VEIN-TERM transatlantic interdisciplinary consensus document. J Vasc Surg. 2009; 49(2): 498–501.
  114. Mendes-Pinto D, Bastianetto P, et al. Cavalcanti Bragalyra L. Endovenous laser ablation of the great saphenous vein comparing 1920-nm and 1470-nm diode laser. Int Angiol. 2016; 35: 599–604.
  115. van den Bos RR, Malskat WSJ, De Maeseneer MGR, et al. Randomized clinical trial of endovenous laser ablation versus steam ablation (LAST trial) for great saphenous varicose veins. Br J Surg. 2014; 101(9): 1077–1083.
  116. Proebstle T, Alm J, Dimitri S, et al. The European multicenter cohort study on cyanoacrylate embolization of refluxing great saphenous veins. J Vasc Surg Venous Lymphat Disord. 2015; 3(1): 2–7.
  117. Milleret R, Huot L, Nicolini P, et al. Great saphenous vein ablation with steam injection: results of a multicentre study. Eur J Vasc Endovasc Surg. 2013; 45(4): 391–396.
  118. Subwongcharoen S, Praditphol N, Chitwiset S. Endovenous microwave ablation of varicose veins: in vitro, live swine model, and clinical study. Surg Laparosc Endosc Percutan Tech. 2009; 19(2): 170–174.
  119. Yang D, Vandongen YK, Stacey MC. Effect of exercise on calf muscle pump function in patients with chronic venous disease. Br J Surg. 1999; 86(3): 338–341.
  120. Sufian S, Arnez A, Labropoulos N, et al. Endovenous heat-induced thrombosis after ablation with 1470 nm laser: Incidence, progression, and risk factors. Phlebology. 2015; 30(5): 325–330.
  121. Kurihara N, Hirokawa M, Yamamoto T. Postoperative Venous Thromboembolism in Patients Undergoing Endovenous Laser and Radiofrequency Ablation of the Saphenous Vein. Ann Vasc Dis. 2016; 9(4): 259–266.
  122. Lawson JA, Gauw SA, van Vlijmen CJ, et al. Prospective comparative cohort study evaluating incompetent great saphenous vein closure using radiofrequency-powered segmental ablation or 1470-nm endovenous laser ablation with radial-tip fibers (Varico 2 study). J Vasc Surg Venous Lymphat Disord. 2018; 6(1): 31–40.
  123. van den Bos R, Arends L, Kockaert M, et al. Endovenous therapies of lower extremity varicosities: a meta-analysis. J Vasc Surg. 2009; 49(1): 230–239.
  124. Eckmann DM. Polidocanol for endovenous microfoam sclerosant therapy. Expert Opin Investig Drugs. 2009; 18(12): 1919–1927.
  125. Rabe E, Breu FX, Cavezzi A, et al. Guideline Group. European guidelines for sclerotherapy in chronic venous disorders. Phlebology. 2014; 29(6): 338–354.
  126. Baccellieri D, Apruzzi L, Ardita V, et al. Early results of mechanochemical ablation for small saphenous vein incompetency using 2% polidocanol. J Vasc Surg Venous Lymphat Disord. 2021; 9(3): 683–690.
  127. Yamaki T, Nozaki M, Sakurai H, et al. Prospective randomized efficacy of ultrasound-guided foam sclerotherapy compared with ultrasound-guided liquid sclerotherapy in the treatment of symptomatic venous malformations. J Vasc Surg. 2008; 47(3): 578–584.
  128. Devereux N, Recke AL, Westermann L, et al. Catheter-directed Foam Sclerotherapy of Great Saphenous Veins in Combination with Pre-treatment Reduction of the Diameter Employing the Principals of Perivenous Tumescent Local Anesthesia. Eur J Vasc Endovasc Surg. 2014; 47(2): 187–195.
  129. M.D. AS. Mechano-Chemical Endo-Venous Ablation of Varicose Veins with Flebogrif Occlusion Catheter. Med J Cairo Univ. 2019; 87(9): 3749–3754.
  130. Elias S, Raines JK. Mechanochemical tumescentless endovenous ablation: final results of the initial clinical trial. Phlebology. 2012; 27(2): 67–72.
  131. Khor SN, Lei J, Kam JW, et al. ClariVein™ - One year results of mechano-chemical ablation for varicose veins in a multi-ethnic Asian population from Singapore. Phlebology. 2018; 33(10): 687–694.
  132. van Eekeren RR, Boersma D, Elias S, et al. Endovenous mechanochemical ablation of great saphenous vein incompetence using the ClariVein device: a safety study. J Endovasc Ther. 2011; 18(3): 328–334.
  133. Witte ME, Zeebregts CJ, de Borst GJ, et al. Mechanochemical endovenous ablation of saphenous veins using the ClariVein: A systematic review. Phlebology. 2017; 32(10): 649–657.
  134. Iłżecki M, Terlecki P, Przywara S, et al. Single-centre experience with mechanochemical ablation of insufficient veins with the Flebogrif® catheter in a 36-month follow-up. Phlebological Review. 2021; 29(1): 32–37.
  135. Iłżecki M, Terlecki P, Przywara S, et al. The novel minimally invasive mechano-chemical technique of the saphenous vein ablation. Our center experience: results of 24 months follow-up. Acta Angiologica. 2019; 25(3): 127–132.
  136. Zubilewicz T, Terlecki P, Terlecki K, et al. Application of endovenous mechanochemical ablation (MOCA) with Flebogrif™ to treat varicose veins of the lower extremities: a single center experience over 3 months of observation. Acta Angiologica. 2017; 22(4): 137–142.
  137. Boersma D, van Eekeren RR, Kelder HJC, et al. Mechanochemical endovenous ablation versus radiofrequency ablation in the treatment of primary small saphenous vein insufficiency (MESSI trial): study protocol for a randomized controlled trial. Trials. 2014; 15: 421.
  138. Holewijn S, Eekeren Rv, Vahl A, et al. Two-year results of a multicenter randomized controlled trial comparing Mechanochemical endovenous Ablation to RADiOfrequeNcy Ablation in the treatment of primary great saphenous vein incompetence (MARADONA trial). J Vasc Surg Venous Lymphat Disord. 2019; 7(3): 364–374.
  139. Mohamed AH, Leung C, Wallace T, et al. A Randomized Controlled Trial of Endovenous Laser Ablation Versus Mechanochemical Ablation With ClariVein in the Management of Superficial Venous Incompetence (LAMA Trial). Ann Surg. 2021; 273(6): e188–e195.
  140. Almeida JI, Javier JJ, Mackay EG, et al. Three-Year Follow-Up of First Human Use of Cyanoacrylate Adhesive for Treatment of Saphenous Vein Incompetence. J Vasc Surg Venous Lymphat Disord. 2015; 3(1): 125.
  141. van Eekeren RR, Boersma D, Holewijn S, et al. Mechanochemical endovenous Ablation versus RADiOfrequeNcy Ablation in the treatment of primary great saphenous vein incompetence (MARADONA): study protocol for a randomized controlled trial. Trials. 2014; 15: 121.
  142. Bozkurt AK, Yılmaz MF. A prospective comparison of a new cyanoacrylate glue and laser ablation for the treatment of venous insufficiency. Phlebology. 2016; 31(1 Suppl): 106–113.
  143. Dimech AP, Cassar K. Efficacy of Cyanoacrylate Glue Ablation of Primary Truncal Varicose Veins Compared to Existing Endovenous Techniques: A Systematic Review of the Literature. Surg J (N Y). 2020; 6(2): e77–e86.
  144. Whiteley MS. High intensity focused ultrasound (HIFU) for the treatment of varicose veins and venous leg ulcers - a new non-invasive procedure and a potentially disruptive technology. Curr Med Res Opin. 2020; 36(3): 509–512.
  145. Visseren FLJ, Mach F, Smulders YM, et al. ESC Scientific Document Group, ESC Scientific Document Group, ESC Scientific Document Group, ESC National Cardiac Societies, ESC Scientific Document Group. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021; 42(34): 3227–3337.
  146. Authors/Task Force Members; ESC Committee for Practice Guidelines (CPG); ESC National Cardiac Societies. 2019 ESC/EAS guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Atherosclerosis. 2019; 290: 140–205.
  147. Lim S, Vos T, Flaxman A, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet. 2012; 380(9859): 2224–2260.
  148. Aboyans V, Ricco JB, Bartelink MLEL, et al. ESC Scientific Document Group. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteriesEndorsed by: the European Stroke Organization (ESO)The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur Heart J. 2018; 39(9): 763–816.
  149. Huxley R, Lee CM, Barzi F, et al. Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus: a systematic review with meta-analysis. Arch Intern Med. 2009; 169(22): 2053–2063.
  150. Fudim M, Jones WS. New Curveball for Hypertension Guidelines? Circulation. 2018; 138(17): 1815–1818.
  151. Bidel S, Hu G, Qiao Q, et al. Coffee consumption and risk of total and cardiovascular mortality among patients with type 2 diabetes. Diabetologia. 2006; 49(11): 2618–2626.
  152. Poole R, Kennedy OJ, Roderick P, et al. Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ. 2017; 359: j5024.
  153. Tverdal A, Selmer R, Cohen JM, et al. Coffee consumption and mortality from cardiovascular diseases and total mortality: Does the brewing method matter? Eur J Prev Cardiol. 2020; 27(18): 1986–1993.
  154. Itoga NK, Tawfik DS, Lee CK, et al. Association of Blood Pressure Measurements With Peripheral Artery Disease Events. Circulation. 2018; 138(17): 1805–1814.
  155. Paravastu SC, Mendonca DA, Silva A. Beta blockers for peripheral arterial disease. Cochrane Database Syst Rev. 2013; 9: CD005508.
  156. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. J Hypertens. 2018; 36(10): 1953–2041.
  157. Mancia Chairperson G, Kreutz Co-Chair R, Brunström M, et al. Authors/Task Force Members:. 2023 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension Endorsed by the European Renal Association (ERA) and the International Society of Hypertension (ISH). J Hypertens. 2023 [Epub ahead of print].
  158. Espinola-Klein C, Weisser G, Jagodzinski A, et al. β-Blockers in patients with intermittent claudication and arterial hypertension: results from the nebivolol or metoprolol in arterial occlusive disease trial. Hypertension. 2011; 58(2): 148–154.
  159. Soga Y, Iida O, Takahara M, et al. Beta-blocker Treatment Does Not Worsen Critical Limb Ischemia in Patients Receiving Endovascular Therapy. J Atheroscler Thromb. 2015; 22(5): 481–489.
  160. Tykarski A, Filipiak J, Kj J, et al. Zasady postępowania w nadciśnieniu tętniczym — 2019 rok Wytyczne Polskiego Towarzystwa Nadciśnienia Tętniczego. Nadc Tętn w Prakt. 2019; 5(1): 1–86.
  161. Gurovich AN, Braith RW. Pulse wave analysis and pulse wave velocity techniques: are they ready for the clinic? Hypertens Res. 2011; 34(2): 166–169.
  162. Gurovich AN, Braith RW. Pulse wave analysis and pulse wave velocity techniques: are they ready for the clinic? Hypertens Res. 2011; 34(2): 166–169.
  163. Jawień A, Filipiak KJ, Bręborowicz A. Rekomendacje dotyczące postępowania w chorobie tętnic kończyn dolnych (LEAD) na podstawie wytycznych ESVS/ESC 2017 — stanowisko ekspertów Polskiego Towarzystwa Chirurgii Naczyniowej, Polskiego Towarzystwa Nadciśnienia Tętniczego, Polskiego Towarzystwa Leczenia Ran oraz Sekcji Farmakoterapii Sercowo-Naczyniowej Polskiego Towarzystwa Kardiologicznego. Choroby Serca i Naczyń. 2020; 17(1): 1–54.
  164. Visseren FLJ, Mach F, Smulders YM. Wytyczne ESC 2021 dotyczace prewencji chorób układu sercowo-naczyniowego w praktyce klinicznej. Kardiologia Polska. 2021; 79(Supp. V): 1–122.
  165. Szymański F, Mickiewicz A, Dzida G, et al. Leczenie dyslipidemii w Polsce — interdyscyplinarne stanowisko grupy ekspertów wsparte przez Sekcję Farmakoterapii Sercowo-Naczyniowej Polskiego Towarzystwa Kardiologicznego. IV Deklaracja Sopocka. Choroby Serca i Naczyń. 2021; 18(3): 95–120.
  166. Colantonio LD, Hubbard D, Monda KL, et al. Atherosclerotic Risk and Statin Use Among Patients With Peripheral Artery Disease. J Am Coll Cardiol. 2020; 76(3): 251–264.
  167. Zhu L, Hayen A, Bell KJL. Legacy effect of fibrate add-on therapy in diabetic patients with dyslipidemia: a secondary analysis of the ACCORDION study. Cardiovasc Diabetol. 2020; 19(1): 28.
  168. Wu KS, Lin PC, Chen YS, et al. The use of statins was associated with reduced COVID-19 mortality: a systematic review and meta-analysis. Ann Med. 2021; 53(1): 874–884.
  169. Cosentino F, Grant P, Aboyans V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2019; 41(2): 255–323.
  170. Gager GM, Gelbenegger G, Jilma B, et al. Cardiovascular Outcome in Patients Treated With SGLT2 Inhibitors for Heart Failure: A Meta-Analysis. Front Cardiovasc Med. 2021; 8: 691907.
  171. Gager GM, von Lewinski D, Sourij H, et al. Effects of SGLT2 Inhibitors on Ion Homeostasis and Oxidative Stress associated Mechanisms in Heart Failure. Biomed Pharmacother. 2021; 143: 112169.
  172. Odutayo A, da Costa BR, Pereira TV, et al. Sodium-Glucose Cotransporter 2 Inhibitors, All-Cause Mortality, and Cardiovascular Outcomes in Adults with Type 2 Diabetes: A Bayesian Meta-Analysis and Meta-Regression. J Am Heart Assoc. 2021; 10(18): e019918.
  173. Wicik Z, Nowak A, Jarosz-Popek J, et al. Characterization of the SGLT2 Interaction Network and Its Regulation by SGLT2 Inhibitors: A Bioinformatic Analysis. Front Pharmacol. 2022; 13: 901340.
  174. Gasecka A, Konwerski M, Pordzik J, et al. Switching between P2Y antagonists - From bench to bedside. Vascul Pharmacol. 2019; 115: 1–12.
  175. Tomaniak M, Filipiak KJ. Anti-inflammatory therapy in the treatment of cardiovascular diseases. Kardiol Pol. 2015; 73(12): 1295–1303.
  176. Moreira DM, da Silva RL, Vieira JL, et al. Role of vascular inflammation in coronary artery disease: potential of anti-inflammatory drugs in the prevention of atherothrombosis. Inflammation and anti-inflammatory drugs in coronary artery disease. Am J Cardiovasc Drugs. 2015; 15(1): 1–11.
  177. Filipiak KJ, Surma S. Is colchicine the holy grail for treating inflammation and reducing cardiovascular risk? Int J Cardiol Cardiovasc Risk Prev. 2021; 10: 200106.
  178. Pompilio G, Monreal M, Pesavento R, et al. Meta-analyses of sulodexide and other drugs in prevention and treatment of post-thrombotic syndrome. Eur Rev Med Pharmacol Sci. 2022; 26(24): 9372–9381.
  179. Bednarz K, Borek A, Drzymala F, et al. Pharmacological protection of vascular endothelium in acute COVID-19. J Physiol Pharmacol. 2022; 73(2).
  180. https://www.worldometers.info/coronavirus/ [06.12.2022].
  181. Golke A, Piekarska K, Dzieciątkowski T. Coronaviruses - a new old menace. Postepy Biochem. 2020; 66(4): 303–308.
  182. Dzieciatkowski T, Szarpak L, Filipiak KJ, et al. COVID-19 challenge for modern medicine. Cardiol J. 2020; 27(2): 175–183.
  183. Shukla AK, Misra S. An overview of post COVID sequelae. J Basic Clin Physiol Pharmacol. 2022; 33(6): 715–726.
  184. https://www.aotm.gov.pl/media/2022/03/Diagnostyka-COVID-19-Aktualizacja-Zalecen-wersja-3.0-25-lutego-2022-r. pdf [06.12.2022].
  185. Dzieciątkowski T. Aktualne zasady diagnostyki wirusologicznej COVID-19, zespołów long-COVID oraz post-COVID. Terapia. 2022; 1(408): 11–16.
  186. Ndwandwe D, Wiysonge CS. COVID-19 vaccines. Curr Opin Immunol. 2021; 71: 111–116.
  187. Mahilkar S, Agrawal S, Chaudhary S, et al. SARS-CoV-2 variants: Impact on biological and clinical outcome. Front Med (Lausanne). 2022; 9: 995960.
  188. Saluja P, Amisha F, Gautam N, et al. A Systematic Review of Reported Cases of Immune Thrombocytopenia after COVID-19 Vaccination. Vaccines (Basel). 2022; 10(9).
  189. Furqan M, Chawla S, Majid M, et al. COVID-19 Vaccine-Related Myocardial and Pericardial Inflammation. Curr Cardiol Rep. 2022; 24(12): 2031–2041.