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Introduction

Abdominal aortic aneurysm (AAA) is defined as wid-
ening of infrarenal aorta more than 30 mm. It has been 
proven that there is a positive association between cur-
rent or past smoking, male gender, age, atherosclerosis, 
hypertension, family history of AAA or other large arter-
ies aneurysm with aneurysm formation [1]. The natural 
history of AAA is progressive dilation, which may lead 
to potentially fatal rupture.The AAA is the 10th cause 
of death in the Western population. Traditional surgical 
repair and minimally invasive endovascular repair are 
the invasive treatment options. Thus, it is crucial to 
take into account the perioperative complications [2].  

Most widely accepted indication for intervention is 
based on AAA maximum transverse diameter being larg-
er than 5.5 cm.This criterion undergoes discussions [3],  
since 10–24% of aneurysms which ruptured are 5.0 cm  
or less in diameter [4–6]. Aortic diameters are the 
cornerstone of current clinical indications for surgery 
in aortic aneurysms, and some limitations in accuracy 
measurements may generate errors in clinical decision 
making. Better understanding, beyond the simple 
clinical application of diameters, of new biomechanical 
information may provide a more reliable prediction of 
the risk of the aneurysm rupture. Hence, individualized, 
biomechanical approach to treatment of AAA is being 
studied. Computer simulations with Finite Element 
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Method (FEM) is well known engineering tool to assess 
the probability of mechanical failure of buildings, planes, 
bridges, etc. This method takes into account geometrical 
as well as mechanical properties of the investigated ob-
ject. Since FEM orientated simulation is highly reliable for 
man-made structures, the examination of biological ob-
jects using the same approach seems to be reasonable. 
However, exact biomechanical factors of aneurysms are 
difficult to obtain, as it would require harvesting samples 
of AAA for every patient. That is why some simplifica-
tions have been introduced to FEM analysis. The simple 
geometric measures such as aneurysm volume, maximal 
wall dilation, ratio of greatest antero-posterior diameter 
to transverse diameter and curvature have been studied 
in order to determine the new rupture predictors [7, 8].  
Due to the failure to anticipate the accurate stress 
distribution, such simplifications were rejected. There 
is still no consensus regarding the impact of the factors 
included into computer simulations; however, general 
guidelines have been outlined.

The aim of this paper is to review biomechanical 
factors which are often being incorporated into Finite 
Element Analysis of the AAA. It will help to fully com-
prehend computer analysis of AAA as a new tool for 
estimation of the AAA rupture risk.

Biomechanical factors  
of rupture risk assessment 

Recently, understanding of biomechanics of the ab-
dominal aorta and the AAA has significantly increased. 
It is due to employment of the engineering tool — FEM 
into rupture risk assessment. This approach requires 
several biomechanical information to properly model 
real behaviour of the AAA. Three factors play crucial role 
in AAA assessment:geometry of the vessel, mechanical 
properties of wall, and applied loading from blood stream. 

Geometry of abdominal aortic aneurysm

Wall thickness
The thickness of physiological abdominal aorta 

amounts to 1.39 mm [9]. Wall thickness of AAA is 
changed due to the dilation of the vessel and possible 
inflammation or other pathological remodelling. More­
over, the wall thickness is not uniform for whole aneu-
rysm. Since 3D models of the AAA are mostly founded on 
contrast-enhanced CT scans, the precise wall thickness 
is not yet possible to observe. As a certain value of this 
parameter must be assumed, numerous measurements 
have been conducted to estimate the average AAA wall 
thickness. The measurements of specimens are given 
in Table 1, whereas the commonly used values of the 
approximated wall thickness are gathered in Table 2.

It has been shown that the ruptured aneurysms have 
significantly thicker wall than electively repaired [10].  
The calcified part of the vessel feature great wall 
thickness in contrast to ruptured regions and both the 
posterior and right part of AAA is slightly thinner than 
the rest of the aneurysm [11]. Wall thickness increases 
in patients suffering from diabetes mellitus, while in 
cases of chronic kidney disease it is considerably thin-
ner [12].Due to such variations in wall thickness it is 
important to develop more precise imaging techniques 
in order to accurately extract vessel shape from AAA 
scans, as this is crucial factor for reliable FEM analysis.

Presence of intraluminal thrombus  
and calcifications in AAA wall

Early FEM analyses of AAA behaviour did not include 
presence of intraluminal thrombus (ILT) or calcifications 
[17, 18], although those inclusions alter the stress 
distribution in aneurysm wall. The impact of those 
structures on the stability of the vessel was a subject 
of discussion. Some researchers claim that ILT lowers 
the rupture risk. This purely mechanical standpoint is 
derived from computer analysis and assumes that ad-
ditional layer in AAA has protective effect of reducing 
the wall stress [19–22].

Others underline the degeneration process that 
occurs in wall due to hypoxia, and ultimately weakens 
of the tissue [23, 24].This biochemical approach is 
based on in vivo experiments and tries to capture the 
micro-changes in wall formation, which could locally 
affect its strength. Aforementioned transformation 
includes: the inflammation and neovascularization [25], 
proteolytic activity [26] —  especially increase in elastase 
production [27], decrease in collagen synthesis [28–30] 
and production of abnormal collagen [29]. From the 
clinical point of view, rapid growth and volume of ILT is 

Table 2. Commonly assumed wall thickness in FEM analysis

Research Assumed wall 
thickness [mm]

Mohammad et al. [13] 1.0

Raut et al. [14] 1.5 

Raghavan et al. [15] 1.9 

Doyle et al. [16] 2.0 

Table 1. Experimental measurements of wall thickness

Research Range of  
measured wall 
thickness [mm]

Average wall 
thickness 

[mm]

Di Martino et al. [10] 2.5–3.6 3.05
Raghavan et al. [11] 0.23–4.26 2.25
Reeps et al. [12] 0.85–3.20 2.03
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correlated with the high risk of rupture [31]. This obser-
vation confirms that the presence of the thick thrombus 
at leasthas negative impact on AAA wall strength. 

Calcifications are well visible on CT scans. However, 
from the image processing point of view they could 
be easily taken as part of the lumen of the AAA as the 
brightness of contrast enhanced lumen and calcification 
is similar. The automatic methods of segmentation do 
not discriminate accurately between adjacent areas of 
the same level of brightness, which leads to misinter-
pretation of a lumen geometry. That is why there is  
a little research which takes into account calcifications in 
3D models of the aneurysm. The unquestionable issue 
is that this kind of inclusion introduces changes in local 
wall stress distribution. Although, there is a lack of 
agreement on how calcifications actually affect it. Since 
the discussed constituent is stiffer than the rest of the  
wall, it presents possible stress concentration which is 
consistent with higher rupture probability [32, 33]. On the 
other hand, calcifications cause local wall thickening [11]  
and demonstrate significant load-bearing effects, which 
results in lowering the wall stress [34].

Since both ILT and calcification alter local mechanical 
parameters of the wall, it is important to incorporate 
those pathologies into 3D models of AAA in order to 
obtain reliable results of FEM analysis. 

Shape of AAA
Although shape of the aneurysm is not a changeable 

parameter in FEM analysis, since it is retrieved from 
CT/MRI scans, it is important to comprehend its impact 
on stress distribution. Aortic tortuosity is described as 
displacement of the lumen position on the consecutive 
scans. The greater the displacement, the bigger the 
aneurysm tortuosity. The cross-sectional diameter 
asymmetry is based on diameter length differences in 
longitudinal and transverse directions on a single scan.  

It has been shown that less tortuous aneurysm with high 
cross-sectional diameter asymmetry are associated with 
ruptured AAA [35]. The high wall stress is concentrated 
in the inflection point of aneurysm geometry, which is 
defined as a point where the surface changes its shape 
from concave to convex [36]. Aforementioned points 
are impossible to observe on 2D CT/MRI scans, thus 
the 3D model incorporated into FEM analysis is superior 
as a rupture location predictor. 

Mechanical properties of AAA

Wall properties
Reliable FEM analysis of AAA requires mechanical in-

formation on wall behaviour. The wall material is widely 
acknowledged to be hyperelastic [37], which means 
it has a little to no change in volume when stretching 
occurs. It can also undergo large deformation and has 
ability to return to normal shape after stress is removed. 
Although aneurysm tissue has non-elastic response to 
stress, some researchers exploit the simplified elastic 
wall model in order to examine the impact of a single 
factor on the stress distribution [38–39]. Early works on 
the wall mechanics employed the isotropic material for 
an aneurysm [40–41]. That is, the vessel was assumed to 
have exactly the same properties (e.g. ability to stretch) 
in both longitudinal and circumferential direction. Intro
ducing biaxial experiments into investigation of AAA 
biomechanics revealed the anisotropy of the wall [42]. 
It turns out that especially circumferential direction is 
prone to stiffening [43]. The most frequently used wall 
parameters are gathered in Table 3.

Intraluminal thrombus and calcification properties
There have been several experiments conducted on 

AAA specimens in order to determine the mechanical 
properties of ILT and calcifications. 

Table 3. Mechanical parameters of the wall

Research Features Mathematical parameters

Raghavan et al. [37]
Wang et al. [44]

Homogeneous
Hyperelastic

Isotropic 
Incompressible

 
a = 0.174 MPa, b = 1.88 MPa

Thubrikar et al. [38] Homogeneous
Linear elastic

Isotropic 
Incompressible

E = 4.66 N/mm2 
v = 0.49

O’Leary at al. [42] Homogeneous
Hyperelastic 
Anisotropic 

Incompressible b0=0.44 b1=306.83 b2=213.34 b3=218.71

W is the strain energy density function and IB stands for the first invariant of Left Cauchy-Green tensor. E stands for Young modulus and v for Poisson’s ratio.  
l is a stretch ratio evaluated in the circumferential (f) and longitudinal (L) directions. a, b, b0, b1, b2, b3 are material coefficients
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Thrombus can be considered as homogeneous or 
three-layered structure. In both cases there is assumption 
on linear elasticity, isotropy and incompressibility. However 
the heterogeneous model is not suitable for FEM analysis 
since one of the ILT layers is too fragile to be mechanically 
tested [44]. Raghavan and Wang presented thrombus as hy-
perelastic material [20, 37]whereas Van Dam points out the 
viscoelastic (both viscous and elastic)behaviour of ILT [45].  
It means that discussed inclusion is able to return to former 
shape after removing the load (elastic property) but it does 
not occur instantly. Deformation in viscoelastic substances 
depend on the time and the temperature which are typical 
viscous characteristics. Finally, the porous nature of ILT 
was applied in FEM analysis [46, 47]. Porous materials  
are heterogeneous and consist of two phases: solid and 
liquid/gas. Each phase alone is homogenous, incompressible 
and is assumed to be isotropic. The solid phase might be 
considered as linear elastic (poroelastic) [47] or hyperelastic 
(porohyperelastic) [46]. The solid material forms a three- 
-dimensional net in voids of which the liquid or gas is pres-
ent. This model of thrombus highlights the fact that there 
are blood leakages from the lumen to the AAA wall through 
ILT. Although each phase separately is incompressible, the 

assembling of both results in a compressible structure. 
Porous description of ILT mitigates its protective effect on 
the wall during computer simulation.

Local wall calcification is present in great number 
of aneurysms. It consists mostly of elements such as 
calcium, phosphorus, magnesium, sodium, chloride, 
potassium sulphur, all in both organic and inorganic 
compounds [48]. The mechanical properties of the cal-
cified deposits are similar to the bone tissue.Therefore,  
assumption of incompressibility, linear elasticity, isotropy 
and homogeneity is valid for all endurance experiments. 
There are however major differences in values of Young’s 
modulus (Tab. 5). The lowest parameters were obtained 
for calcified non-aneurysmatic aortic tissue [49]. Due to 
the lack of information on calcification properties of aneu-
rysm, this value was used in FEM analysis. The following  
experiments were conducted on proper AAA specimens. 
However, the results depend on the composition and 
the degree of calcification. Maier’s study covers tissue 
samples from slightly to highly calcified, thus the range 
of values was presented [34].

Material information on both constituents is listed in 
Table 4 and Table 5.

Table 4. Mechanical parameters of ILT 
Research Features Mathematical parameters

Di Martino et al. [50] Homogeneous
Linear elastic

Isotropic 
Incompressible

E = 0.11 MPa 
v = 0.45

Wang et al. [44] Heterogeneous
Linear elastic

Isotropic 
Incompressible

Luminal layer E = 0.54 MPa
Medial layer E = 0.28 MPa
Abluminal layer — no data

Vande Geest et al. [51] Homogenous
Hyperelastic 

Isotropic 
Incompressible

a = 7.98 N/cm2, b = 8.71 N/cm2

Van Dan et al. [45] Homogenous
Viscoelastic

Isotropic
Incompressible

w = < 1 rad/s (0.16 Hz),  
100 rad/s (16 Hz) > n = 3

Ayyalasomayajula et al. [46] Porohyperelastic
Solid part:

homogeneous
hyperelastic

isotropic
incompressible

Fluid part:
homogeneous

isotropic
incompressible

Detailed information on porohyperelastic ILT 
is out of scope of this paper and can be found 

in [46]

E stands for Young modulus and v for Poisson’s ratio. W is the strain energy density function and IB stands for the first invariant of Left Cauchy-Green tensor. a, b are ma-
terial coefficients. G’ is the storage modulus. li and Gi are a set of the relaxation time and shear modulus for the ith mode and w is angular frequency. dtotal  ij      stands for total 
stress tensor, pf 

 is the pressure exerted by the pore fluid on the surrounding solid and deff  ij    is the effective stress in the solid component. dij is the Kronecker delta [46]



168

Acta Angiol, 2016, Vol. 22, No. 4

www.journals.viamedica.pl/acta_angiologica

Loadings

Static and dynamic impact of blood on AAA
The impact of blood as a loading force was firstly 

used as uniform pressure applied to the inner surface 
of the AAA models. There are several slightly different 
approaches in that matter. As the CT scans are widely 
used for extraction of aneurysm shape, certain imaging 
conditions have to be ensured. It is important to employ 
ECG-gaited CT in order to obtain AAA geometry in 
diastolic phase of cardiac cycle. Some studies presented 
results of FEM analysis after applying the full systolic 
pressure to AAA model [32, 52]. The used systolic pres-
sure is either obtained from the patient or assumed as 
a value from the range 110–130 mm Hg. Others used 
mean arterial pressure (MAP) as a loading force [53, 54]. 
Both cases may lead to overestimation of wall stress, as 
the aneurysm is already under diastolic blood pressure.

Another approach is based on numerous techniques 
of acquiring the non-stressed AAA model before ap-
plying actual blood pressure [55–57]. It is achieved by 
reverse simulation resulting in AAA model at “zero- 
-pressure” circumstances.

The introduction of the haemodynamics of blood flow 
into simulations was a breakthrough in the analysis [50]. 
Blood is, in fact, viscous substance and thus, its flow is 
laminar. It means that there are various velocities of the 
blood flow, depending on the distance from the vessel 

wall. The highest velocity occurs in the centre of the 
vessel and the lowest alongside the wall. The different 
types of velocity profile were examined by Chandra on 
the basis of the MRI scans [58]. As a consequence of 
laminar flow in tortuous vessel and the pulsation of the 
blood stream, the non-uniform pressure distribution 
develops on the inner surface of the wall. Haemodynamic 
load is closer to the real conditions occurring in the an-
eurysm than the static pressure, and thereby produces 
more reliable results from FEM analysis. The examples 
of different kinds of load used in FEM simulations are 
presented in Table 6.

Shear stress
In some studies, the lack of application of the shear 

stress is listed as an experiment limitation. However, 
the relevance of this parameter is questionable. Shear 
stress acts along the surface to which it is applied and 
causes geometrical deformation due to the “pulling” 
effect. It is intuitive to assume that blood flow affects 
the AAA wall in such manner. Nevertheless, it has been 
argued that shear stress may be omitted in computer 
simulations as it does not affect the wall directly, since 
most of aneurysms have ILT deposits as an obstacle 
between wall and blood flow, and the value of possible 
shear stress is several orders of magnitude lower than 
pressure induced wall stress [60].

Peak Wall Stress (PWS)

The rupture of the aneurysm emerges when me-
chanical stress exceeds strength of the vessel. Thus, 
assessment of the occurrence of that situation is crucial. 
Peak wall stress is, in fact, the maximal stress that occurs 
in aneurysmatic wall during the cardiac cycle. PWS is 
obtained from FEM analysis which incorporates indi-
vidualized, geometrical and biomechanical parameters 
of the aneurysm. It has been proven that PWS is signifi-

Table 5. Mechanical parameters of calcification

Research Mathematical parameters

Speelman et al. [32] E = 1,47 MPa
v = 0,45

Maier et al. [34] E = < 40 MPa, 450 MPa > 
v = 0.4

Marra et al. [48] E = 20.5 GPa
v = 0.4

E stands for Young modulus and v for Poisson’s ratio

Table 6. Mechanical parameters of simulation load

Research Features Mathematical parameters

Speelman et al. [32] Uniform pressure applied to the 
inner surface of the models

16 kPa

Gasser et al. [53] Uniform pressure applied to the 
inner surface of the models

MAP = pd+1/3(ps-pd)
ps — systolic pressure 
pd — diastolic pressure

Scotti et al. [59] Fluid flow

M = 3.5 cP, r = 1.05 g/cm3 

Where r is the fluid density, v is the velocity vector, t the stress tensor, p is the fluid pressure, dij is the Kronecker delta, m is the dynamic viscosity of the fluid, and eij is 
the strain rate and fB is the body force
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cantly higher in the AAAs near the time of the rupture in 
contrast to electively repaired aneurysms [17, 40]. The 
positive correlation between the PWS and the localiza-
tion of rupture has been proven [41]. In consequence, 
PWS seems to be more accurate predictor of the AAA 
rupture than simple geometric based indicators [7, 8, 
61]. The impacts of numerous biomechanical factors on 
PWS were studied. Georgakarakos showed that internal 
tortuosity affect the value and localization of PWS. It 
was highlighted that the tortuosity depends on the ILT 
distribution. Thus, the ILT, as geometrical component of 
AAA, must be included into the aneurysm model [62].

It is important to notice that PWS estimates maximal 
wall stress and does not take into account information 
regarding wall strength. The latter varies amongst 
patients and even within the given aneurysm. Thus, 
PWS might be treated only as indicator of the weakest 
areas of whole vessel, not as a measure of rupture risk 
likelihood.

Conclusions

In this paper, the important parameters of the FEM 
analysis were presented. Since the Law of Laplace and 
the consequent threshold of 55 mm of the AAA diam-
eter as a cut off value for the surgical interventionhave 
limitations, there is a need for the development of new 
predictors of rupture risk. Numerous factors and their 
impact on the aneurysmswhere studied resulting in 
different approaches to FEM analysis. Nevertheless, the 
predominance of detailed biomechanical investigation 
was proven. As it was stated, geometrical parameters 
play essential role in computer simulations of AAA 
behaviour. That is why development in imaging tech-
niques resulting in acquisition the precise AAA shape 
is desirable. It is worth noticing that all the mentioned 
mechanical parameters are only mathematical models 
which do not accurately reflect the behaviour of com-
plex aneurysm. Further investigation on that subject 
would be highly beneficial. Nevertheless, the results 
obtained from the computer simulations are far more 
reliable predictor of AAA rupture than the conventional 
diameter criterion. Thus FEM analysis should be con-
tinually improved and ultimately introduced into the 
clinical practice.
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