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Abstract
Atherosclerosis has been shown to alter vascular properties and predispose to injury. Blunt aortic trauma (BAT) 
is responsible for 20% of vehicle-related deaths. This work aims to demonstrate and better understand the 
biomechanics of the aorta with and without atherosclerotic changes during a frontal car crash using a finite 
element method (FEM). Secondarily, the influence of blood pressure was evaluated. A FEM model was created 
with an ANSYS system based on computed tomography images of 44 patients.The distribution of stress and 
deformation varies according to the stage of atherosclerotic disease. Finally, at a speed of 30 km/h, an aortic 
rupture occurs. The presence of a calcified atherosclerotic plaque in the thoracic aorta at an advanced and 
calcified stage increases its susceptibility to rupture during a car crash. No effect of blood pressure on aortic 
biomechanics was observed.
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Introduction

Blunt aortic trauma (BAT) is responsible for approx. 
20% of vehicle-related deaths and is associated with 
a high mortality rate due to blunt traumatic aortic ruptu-
re (BTAR) or blunt traumatic aortic injury (BTAI) [1, 2].  
The aortic isthmus is the site of most BTAR/BTAI. 
This part of the aorta, as a “transition zone” between 
a secured descending aorta and an unsecured ascending 
aorta, appears to be most exposed to trauma due to the 
forces of bending, torsion, and tension [1]. The nature 
of the trauma is important, as is the structure of the 
aorta itself. Atherosclerotic lesions occur in arteries 

with low wall shear stress and high oscillatory stress 
values [3]. In a healthy state, the inner layer of the aorta 
consists of endothelial cells. The biomechanics change 
with the accumulation of other cells such as smooth 
muscle cells, collagen and elastin fibers, adipocytes, 
foam cells, and finally calcifications or blood cells. The 
vascular smooth muscle cells and their differentiation 
within the aorta are unique. Proteomic studies have 
described 232 proteins present in the aorta that are 
specific to the aorta [4]. These phenotypic changes may 
predispose to atherosclerotic lesions. Atherosclerosis 
itself has been shown to increase arterial stiffness and 
predispose to intimal rupture and injury [5–7].



2

Acta Angiol

www.journals.viamedica.pl/acta_angiologica

This paper aims to present a finite element model 
of polytrauma and its influence on human vascular 
tissue, represented by the thoracic aorta, in a healthy 
and atherosclerotic state. The second aspect was to 
analyze the influence of systolic blood pressure on the 
biomechanics of the aorta during a car crash. This work 
should provide a future solution for further biomecha-
nical analysis of human vascular tissue.

Materials and methods

The study protocol conforms to the ethical guideli-
nes of the 1975 Declaration of Helsinki. Approval of the 
institutional ethics commission has been obtained for 
this study (Decision number 33/2019 of 13.02.2019).

Exclusion criteria. According to the 2014 ESC gu-
idelines of aortic diseases [8], patients are eligible for 
surgical treatment of aortic aneurysms with an aortic 
diameter of 55 mm, and in some justified cases (e.g., 
bicuspid aortic valve, Marfan syndrome, growth > 2 
mm/year) with an aortic diameter of 50 mm. Only pa-
tients with an aortic diameter ≤ 50 mm were included in 
further analyses. Also, patients with a known neoplastic 
process within the thorax cavity, suspicious thoracic 
lesions, after cardiothoracic surgery, with coarctation of 
the aorta or other specific anomalies, or with a history 
of a connective tissue disease have been excluded from 
further analyses.

In silico analyses have been performed with AN-
SYS and have been based on computed tomography 
(CT) images of 44 patients treated in the Independent 
Public Regional Hospital in Szczecin, Poland in years 
12.2015–12.2022.

Due to the complexity of a thorax and the high 
computing power required to create an FE- model, 
the authors have created an initial model of a thorax. 

A simplified scheme is shown in Figure 1. Based on 
this model, the biomechanical properties of bones and 
internal organs were used to create a gel into which 
an aorta was placed.

The thorax has been modeled with material proper-
ties given in Table 1. It was assumed that the pressure 
within the thoracic aorta is 100, 115, and 125 mmHg. 
Due to data discrepancies, the pressure in the thoracic 
cavity was modeled as 1 atmosphere.

Atherosclerotic plaques have been modeled at dif-
ferent stages of atherosclerotic disease. The thickening 
of the vessel wall due to plaque progression was also 
considered and divided into stages. Assuming that the 
intima occupies approximately 3% of the aortic wall 
thickness in healthy conditions, stages 1, 2, 3, and 4 
result in intima growth to 5%, 20%, 50%, and 80% of 
the arterial wall thickness, respectively. For simplicity, 
the atherosclerotic plaque model has been restricted 
to the intima.

Stage 1 represents a lipid tissue covering 25% of 
the aortic wall with 5% intimal growth in cross-section. 
Stage 2 was modeled as lipid tissue covering 50% of 
the aortic wall with 5% (covering 25% of the aortic 
wall) and 20% (covering 25% of the aortic wall) intimal 
growth in cross-section. Stage 3 covers 75% of the 
aortic wall in cross-section and contains lipid (25% 
with 5% and 20% intimal growth) and fibrotic (25%) 
tissue. Stage 4 covers 100% of the aortic wall in cross-
-section and consists of: the lipid tissue (25% with 5%
and 20% intimal growth), fibrotic tissue (25%), and
calcified tissue (25%). The simplified scheme is shown
in Figure 2. Material properties have been based on the 
work of Carrera et al. [23] and are presented in Table 2.

The next step was to simulate a frontal car crash 
at the following speeds: 15 km/h, 20 km/h, 25 km/h, 
and 30 km/h for each stage. In addition, three models 

Table 1. Material properties of the structures of a thoracic cavity
Tissue Young modulus Poisson’s ratio

Ribs [9, 10] 10–17 GPa 0.3

Sternum [9, 10] 10–17 GPa 0.3

Thoracic spine [11] 19.7 GPa 0.3

Aorta [12] 7.5 MPa 0.45

Heart wall [13, 14] 480 MPa 0.4

Red blood cells [15, 16]

White blood cells [17]

Platelets [17]

26 kPa

16 MPa

1–15 kPa

0.49

0.49

0.49

Lungs [18–20] 3.55 kPa 0.4

Oesophagus [21] 480 MPa 0.5

Adipose tissue [22] 1.3 MPa 0.49

Gel 120 MPa 0.35
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have been created for the 15 km/h speed (at each level) 
with increasing systolic blood pressure of 115 mmHg 
and 125 mmHg.

Results

The general scheme common to all configurations 
results in the aorta bending from anterior to posterior 
(due to the force applied anteriorly). In all cases, there 
is a deformation of the thoracic cavity which increases 
with time. The elastic strain reaches its maximum within 
the first few seconds and then decreases. The model 
for healthy conditions at a speed of 15 km/h is shown 
in Figures 3 and 4.

Healthy conditions. Initial localization of maximum 
stress and deformation can be observed on the distal 
end of the vessel at a speed of 15 km/h. This pattern 
changes and results in centrally located highest stresses 
and deformation at a speed of 30 km/h. Deformation 
increases and the highest stress values are observed at 
a speed of 20 km/h. Changes are presented in Figures 
5, 6, 11, and 12.

Stage 1. Deformations and stresses increase wit-
hout time displacement. At the speed of 15 km/h, the 
highest stresses and deformation occur within the left 
and posterior aortic walls. At the speed of 30 km/h 
forces acting on the right aortic wall increase. Forces 
acting on the posterior and both lateral walls increase. 
The lowest values can be observed on the front aortic 
wall. Changes are presented in Figures 7, 8, 13 and 14.

Stage 2. Deformations and stresses increase with 
a small-time shift.

Stage 3. Deformation reaches lower initial values 
with increasing tendency. Stresses become higher.

Stage 4. Initially “spilled” maximum stress and de-
formation at the posterior and lateral wall is localized 
on the anterior aortic wall. Stresses and deformations 
increase and finally reach their highest values at the 
end of a simulation leading to aortic rupture on the 
anterior aortic wall. Changes are presented in Figures 
9, 10, 15 and 16. 

A comparison of the differences in deformation and 
stress between healthy aorta and stage 4 is shown in 
Figure 18. Aortic rupture is shown in Figure 17.

Discussion

The human thorax is a structure complicated to 
model. Wang was the first to present a finite element 
model of a human thorax presenting not only bone 
tissue but also organs and vasculature [24, 25]. Shah 
et al. were the first to create a FEM model of an aorta 
and its rupture during a chest impact [26]. Followed by 
other authors, the first models have been proposed to 
model biomechanical factors of aortic tissue [26, 27]. 
Firstly, it should be explained that deformation (caused 
by a given force acting on a body) is expressed as strain. 
The strain is useful in determining the exact elongation 
or tension a structure may experience under certain 
loading conditions. Stress, on the other hand, determi-
nes the state of a structure under external loads. The 
von Mises stress is introduced in this paper. In this case, 
it is used to describe the yielding of the aorta under 
loading conditions at the point of maximum principal 
strain and is considered to represent a potential failure 
of aortic integrity. 

Interestingly, the aorta has been considered as a “de-
formable elastic structure with stresses dependent on 
transmural pressure” [28]. It has been shown that the 
diameter of the aorta changes with the systolic blood 
pressure [29, 30]. Vasava et. al have presented a finite 
element method study for hyper- and hypotension [31]. 
However, the study was designed to describe a blood 
flow pattern and stresses within the thoracic aorta and 
its main branches. In this study, it was shown that an 
increase of blood pressure up to 145 mmHg within 
the thoracic aorta has no relevant impact on the bio-
mechanics of the thoracic aorta at a speed of 15 km/h. 
The influence of pressure should be further evaluated 
in the future for higher speed values.

Little data is describing a BAT within the thoracic aor-
ta and the mechanism of BAT remains unclear [32–34].  
Proposed explanations include disruption of the aorta 
from within by hypertension, sudden stretching of an 
arterial wall with subsequent rupture at the site of pre-
sumed weakness (isthmus), diaphragmatic aortic occlu-
sion, a sudden increase in intrathoracic pressure acting 
on the heart and great vessels through the bony stru-
ctures of the thoracic cavity, upward displacement of 
the heart, and a combination of the above mechanisms 
[32, 33, 35–37]. Some authors claim that trauma places 
the aorta in a highly vulnerable state and that the de-
formation of a vessel is the direct initiator of injury [1].  
Constantly changing conditions, dynamics, and many 
computations suggest that in silico modeling is an 
appropriate direction to study BAT. To fully understand 
BAT, the mechanics of the aortic wall should be studied 
in detail. To the best of our knowledge, this is the first 
paper to describe the forces acting within the thoracic 

Table 2. The biomechanical properties of modeled materials
Tissue Young’s modulus [MPa] Poisson’s ratio

Lipid 0.10 0.33

Fibrous 2.40 0.33

Calcified 12.00 0.33

Tunica media 1.00 0.33
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Figure 1. The initial model of a thorax cavity

Figure 2. Stages of an atherosclerotic Plaque. A. Healthy aorta; B. Stage 1 with cross-section; C. Stage 2; D. Stage 3; E. Stage 4. 
Colours represent particular tissues. Yellow-lipid tissue. Green-fibrotic tissue. Brown-calcified tissue
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aorta with and without atherosclerotic lesions during 
trauma. 

There are 6 basic types of atherosclerotic lesions: 
type I — initial plaque, type II — fatty streak, type 
III — intermediate lesion or pre-atheroma, type IV 
— atheroma, type V — fibro-atheroma, and type 
VI — a ruptured lesion that can transform into type 
VII — calcified lesion or type VIII — fibrotic lesion [38, 
39]. Along with the accumulation of other cells with 
different biomechanical properties, the biomechanics 
of the aortic wall alters. Kozun et al. [5] point out that 
Young’s modulus of a single collagen fiber is higher 
compared to fibrosis within an atherosclerotic lesion. 
The authors have studied the influence of atheroscle-
rosis in its different stages on aortic dissection. They 
have shown that the lowest values occur within stage IV 
lesions, which may make the aorta most susceptible to 

dissection. In our study, lesions with a calcified plaque 
component led to aortic rupture. Another pathological 
study of 8 cadavers with traumatic aortic rupture sho-
wed that longitudinal stretching of the aorta was the 
main cause of injury. Atherosclerotic changes within 
the aorta have also been shown to promote injury 
[40]. Increasing age is one of the risk factors for BAT 
[37]. Current trends and constantly growing amounts 
of data require special solutions and the application of 
artificial intelligence in their processing [41]. Recently, 
attempts have been made to combine a FE- method 
with artificial intelligence (deep neural networks) [42].

There are two methods of stress application — in-
dentation and tensile. Indentation has also been shown 
to give lower values of Young’s modulus in soft tissues 
[43]. Unfortunately, unified material properties of tis-
sues, including those within a thoracic cavity, are not 

Figure 3. Deformation under healthy conditions at a speed of 15 km/h

Figure 4. Elastic strain under healthy conditions at a speed of 15 km/h
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available. In addition, material properties vary between 
different items depending on the test conditions, and 
the age or sex of the specimen [24]. In conclusion, test 
conditions should be standardized and more rigorous. 

Most chest injuries with fatal aortic rupture occur 
at speeds greater than 33 km/h [44, 45]. This finding 
has been confirmed in our study. Some authors have 
presented an FE model of the aorta during a frontal 

impact [25], but none of these articles analyzed the 
presence of atherosclerotic tissue. In this study, the 
authors present an in silico model of aortic rupture 
during a car crash.

Limitations. Our paper presents an in silico model 
of the aorta in a simplified form of a straightened pipe, 
preserving all the biomechanical properties of aortic 
tissue. The main objective of this study, as a first step 

Figure 6. Maximum deformation of an aortic wall in healthy conditions at the speed of 15 km/h. A — aortic front wall; B — left 
wall; C — posterior wall; D — right wall

Figure 5. Maximum stresses in an aortic wall in healthy conditions at the speed of 15 km/h. A — aortic front wall; B — left wall; 
C — posterior wall; D — right wall
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in the biomechanical analysis of the aorta, was to deter-
mine the influence of the presence of an atherosclerotic 
plaque itself on the behavior of the vascular tissue in 
polytrauma. According to the authors, it is necessary to 
first consider the isolated factor of atherosclerosis and 
its effect on the biomechanics of the vessel, and only 
then to assess the shape of the aorta. Skipping one of 
the steps in this analysis could lead to erroneous conclu-
sions. Therefore, this article only considers the model 
of atherosclerosis at different stages of progression 
within the vessel wall. Similar models with anatomical 
curvatures and aortic branches as well as longitudinal 
forces should be the next direction to assess the influ-
ence of polytrauma on the human atherosclerotic aorta.

The presence of a safety belt was not evaluated in 
this study. 

In addition, the aortic wall is described as inho-
mogeneous with non-linear anisotropic mechanical 
properties. As mentioned above, no study has evalua-
ted the biomechanical properties of the aorta in vivo. 
Therefore, a simplified model of the aortic wall has 
been presented. 

This study presents a theoretical model of the be-
havior of aortic tissue with and without atherosclerosis 
and should be further developed in the future to pro-
vide new solutions for the treatment and monitoring 
of patients with blunt aortic trauma.

Conclusions

The presence of a calcified atherosclerotic plaque 
within the thoracic aorta increases its vulnerability to 
rupture during a car crash. The change in biomechanics 
found in the finite element method analysis is more 
intensified not with low-grade atherosclerotic lesions 
but in advanced atherosclerosis with calcified athero-
sclerotic foci occurring within it. In addition, the authors 
found no relevant correlation between an increase in 
systolic blood pressure (even within the normal range) 
and altered stress patterns within the thoracic aorta. 
This description may contribute to a better understan-
ding and visualization of complicated aortic trauma. 

Secondly, these models can be used in planning me-
dical treatment or improving already existing guidelines 

Figure 7. Maximum stresses in an aortic wall in stage 1 within the first second after impact at 15 km/h. A — aortic front wall; B 
— left wall; C — posterior wall; D — right wall
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for polytrauma involving the aorta. The thoracic aorta 
is a specific structure requiring a strong computational 
power. The authors forecast that this paper will contri-
bute to providing future solutions and the development 
of complicated in-silico simulations.
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Figure 8. Maximum deformation of an aortic wall in stage 1 within the first second after impact at 15 km/h. A — aortic front wall; 
B — left wall; C — posterior wall; D — right wall
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Figure 9. Maximum stresses in an aortic wall in stage 4 within the first second after impact at 15 km/h. A — aortic front wall; B 
— left wall; C — posterior wall; D — right wall

Figure 10. Maximum deformation of an aortic wall in stage 4 within the first second after impact at 15 km/h. A — aortic front wall; 
B — left wall; C — posterior wall; D — right wall
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Figure 11. Maximum stresses in an aortic wall in healthy conditions at the speed of 30 km/h. A — aortic front wall; B — left wall; 
C — posterior wall; D — right wall

Figure 12. Maximum deformation of an aortic wall in healthy conditions at the speed of 30 km/h. A — aortic front wall; B — left 
wall; C — posterior wall; D — right wall
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Figure 13. Maximum stresses in an aortic wall in stage 1 within the first second after impact at 30 km/h. A — aortic front wall; 
B — left wall; C — posterior wall; D — right wall

Figure 14. Maximum deformation of an aortic wall in stage 1 within the first second after impact at 30 km/h. A — aortic front wall; 
B — left wall; C — posterior wall; D — right wall
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Figure 15. Maximum stresses in an aortic wall in stage 4 within the first second after impact at 30 km/h. A — aortic front wall; 
B — left wall; C — posterior wall; D — right wall

Figure 16. Maximum deformation of an aortic wall in in stage 4 within the first second after impact at 30 km/h. A — aortic front 
wall; B — left wall; C — posterior wall; D — right wall
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Figure 17. Aortic rupture in stage 4 at a speed of 30 km/h

Figure 18. Speed of 30 km/h in healthy condition: A) stresses; B) deformations. Speed of 30 km/h in Stage 4: C) stresses; D) 
deformations
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