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Abstract
This review delves into the intricate roles of CD8+ T cells, Th17 cells, regulatory T cells (Tregs), and Toll-like 
receptors (TLRs) in the pathogenesis of atherosclerosis, with a particular focus on Lower Extremity Arterial Disease 
(LEAD). CD8+ T cells are highlighted for their dual role in atherosclerosis, acting as both exacerbators and 
potential protectors within the atherosclerotic environment. Their cytotoxic activity towards cells within plaques 
can promote necrotic core formation and plaque instability, while certain subsets, particularly regulatory CD8+ 
T cells, may exert atheroprotective effects through immunosuppressive functions. Th17 cells, known for their 
production of pro-inflammatory cytokines, are implicated in promoting inflammation and disease progression, 
suggesting that targeting Th17 cells could be a viable therapeutic strategy. Conversely, Tregs are identified for 
their potential to maintain immune balance and prevent excessive inflammatory responses, thereby stabili-
zing atherosclerotic lesions. The article also explores the role of TLRs in recognizing pathogen-associated and 
damage-associated molecular patterns, triggering inflammatory responses that contribute to atherosclerosis 
development and progression. By understanding the complex interplay between these immune components, the 
article suggests that modulating the activity of CD8+ T cells, balancing Th17 and Treg responses, and targeting 
TLR-mediated signalling pathways could offer new avenues for therapeutic intervention in atherosclerosis and 
LEAD. This comprehensive review underscores the need for targeted therapies that can modulate immune 
responses, highlighting the potential of immune system targeting in managing atherosclerosis and preventing 
LEAD complications.
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Introduction

Lower extremity arterial disease (LEAD) stands as 
a significant manifestation of peripheral artery disease 
(PAD), presenting a considerable global health chal-
lenge. In 2015, it was estimated that around 236.62 
million adults over the age of 25 were living with PAD 

worldwide, a figure that has risen due to population 
growth [1]. LEAD is characterized by the progressive 
narrowing and blockage of peripheral arteries, primarily 
caused by the buildup of atherosclerotic plaques. This 
leads to decreased blood flow, ischemia, and in severe 
cases, limb amputation. The Canadian Cardiovascular 
Society’s guidelines from 2022 highlight the necessity 
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of a comprehensive approach to managing PAD. This 
approach includes lifestyle changes, pharmacotherapy, 
and surgical interventions when needed, aiming to 
enhance patient outcomes [2]. Furthermore, LEAD 
significantly contributes to functional disability and re-
duced quality of life, while also indicating a higher risk 
of cardiovascular events and mortality [3, 4].

The pathophysiology of LEAD is intricate and 
involves multiple factors, including lipid imbalances, 
oxidative stress, endothelial dysfunction, and a persi-
stent inflammatory response. These elements collec-
tively drive the onset, progression, and complications 
associated with atherosclerotic lesions [5]. The disease 
process initiates damage to the endothelium, leading to 
increased vascular permeability and the adhesion and 
migration of leukocytes. Monocytes and macrophages 
are among the first to infiltrate the endothelium, where 
they consume oxidized LDL particles and become foam 
cells, marking the early stages of atheroma formation. T 
lymphocytes, including CD4+ helper, CD8+ cytotoxic, 
and regulatory T cells, further influence the inflamma-
tory environment within plaques, affecting cytokine 
production, immune cell recruitment, and the integrity 
of the fibrous cap [6–7].

This systematic review aims to thoroughly evaluate 
the current landscape of medical therapy and revascu-
larization strategies for managing lower limb LEAD. It 
places a special focus on the effects of these strategies 
on the underlying immunopathogenesis and chronic 
subclinical inflammation. By integrating evidence from 
clinical trials, observational studies, and mechanistic 
research, the authors seek to clarify how modern 
therapeutic approaches can influence the inflammatory 
processes at the heart of LEAD’s pathophysiology.

Moreover, the review delves into the specific roles 
of T cell subsets, including CD8+ T cells, regulatory T 
cells (Tregs), and Th17 cells, in the progression of at-
herosclerosis. CD8+ T cells, known for their cytotoxic 
capabilities, exacerbate the inflammatory state within 
plaques by releasing pro-inflammatory cytokines and cy-
totoxic molecules, further damaging the vascular system 
and destabilizing plaques [8]. Toll-like receptors (TLRs), 
as part of the innate immune system, play a crucial role 
in recognizing pathogen-associated molecular patterns 
(PAMPs) and damage-associated molecular patterns 
(DAMPs) within atherosclerotic plaques [9]. 

This article not only explores the immunopathoge-
nesis of atherosclerosis in LEAD but also examines the 
potential of emerging therapies targeting inflammatory 
pathways. It evaluates their effectiveness in altering 
immune cell behaviour, cytokine profiles, and plaque 
characteristics in the context of LEAD. The incorpora-
tion of anti-inflammatory agents, immunomodulators, 
and targeted biologics into the treatment paradigm for 

LEAD represents a promising direction for improving 
clinical outcomes. Through an in-depth review of 
the literature, this article highlights advancements in 
understanding the role of inflammation in LEAD, the 
challenges in translating this knowledge into effective 
clinical interventions, and future research and therapy 
directions.

CD8+ cells

This participation of naïve CD8+ T cells takes 
place in response to an encountered specific antigen 
presented by major histocompatibility complex class 
I (MHC I or human leukocyte antigen (HLA)) on an 
antigen-presenting cell (APC) through the T cell re-
ceptor (TCR). Such interaction provokes the activation 
and differentiation of CD8+ T cells into effector T 
cells, accompanied by clonal expansion. Activation and 
proliferation of T-cells are thus carefully controlled so 
that in the background of a highly potent response to 
infection, the outcome shows only limited and tempo-
rary immune pathology. However, CD8+ T cells can 
also result in exaggerated immune responses and thus 
immunopathology damage [10].

Because of their cytotoxic functionality within the 
adaptive immune response, CD8+ T cells play an op-
posite role in the pathogenesis of atherosclerosis. Again, 
this duality of CD8+ T cells’ action in atherosclerosis 
represents another level of complexity that exists 
among immune responses in atherosclerotic lesions. 
These cells are mainly recognized to be cytotoxic 
and can both exacerbate and convert to protective 
mediators of the atherosclerotic process, depending 
on the biological context of their activation and the 
prevalent microenvironment of the plaque [11]. They 
act in various ways like the cytotoxic activities of these 
CD8+ T cells toward the cells in atherosclerotic pla-
ques including vascular smooth muscle cells (VSMC), 
endothelial cells, and macrophages through induction 
of cell death. There is a promotion of necrotic core 
formation, and plaque instability [12]. This is further 
amplified by the presence of the pro-inflammatory 
cytokines, for instance, the tumour necrosis factor-
-alpha (TNF-α), which further, through its secretion of 
cytotoxic molecules such as granzyme B and perforin, 
amplifies local inflammation while concomitantly desta-
bilizing plaques [13–14].

Additionally, CD8+ T cells can affect monocyte 
recruitment and differentiation into macrophages, 
which enhances the inflammatory environment and lipid 
buildup in plaques [15]. The antigen-specific activation 
of CD8+ T cells targeting atherosclerosis-relevant 
antigens brings out involvement in mediating adaptive 
immunity, suggesting that oxLDL epitopes within the 
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plaque can drive CD8+ T cell-mediated cytotoxicity 
and inflammation [16]. A more recent study confirms 
that antigen-specifically reactions against vascular 
cells promote arterial inflammation and lesion for-
mation. Researchers bred Apoe−/− mice expressing 
β-Galactosidase in vascular smooth muscle cells in the 
aorta. However, they found CD8+ against dendritic 
cells with larger atherosclerotic lesions than control 
in Apoe −/− mice [17]. In the context of LEAD, such 
evidence of plaque stability and inflammation being 
crucial determinants for both disease progression and 
clinical outcomes suggests systemic and local effects by 
CD8+ T cells specific for atherosclerosis.

All of these functions of CD8+ T cells may have 
a strong impact on the stability of plaques in arteries 
of the legs, among which arterial disease seems to have 
much more advanced and more complex lesions. The 
induction of cell death and promotion of necrotic core 
formation by CD8+ T cells can lead to plaque rupture, 
a critical event that precipitates acute cardiovascular 
complications such as myocardial infarction and stroke 
[18]. Cochain et al. showed that CD8+T cells contri-
bute to inflammation and further destabilize plaques in 
a Ldlr-/- mouse model, emphasizing the importance of 
very specific therapeutic strategies for the modulation 
of these cells in PAD [19]. In another study, Depuydt 
et al. analyzed atherosclerotic plaques taken during 
carotid endarterectomy in 61 patients. Their research 
revealed a statistically significant accumulation of T 
cells, especially CD8+, in the examined material. 
The comparison with blood T cells provides insights 
into the systemic immune response and its relation-
ship with localized inflammation in the plaques [20]. 
Conversely, certain subsets of CD8+ T cells exhibit 
atheroprotective roles, highlighting the complexity of 
their involvement in atherosclerosis. Regulatory CD8+ 
T cells, characterized by the expression of CD25 and 
other markers, can exert immunosuppressive functions, 
inhibiting the activation and proliferation of effector 
T cells and reducing inflammation within the plaque. 
Zhou et al. observe the expression of CD8+CD25+ 
T cells in atherosclerotic apoE (-/-) mice. These cells 
exhibited a suppressive phenotype and function, capab-
le of reducing the proliferation of splenic CD4+ T cells 
and significantly reducing atherosclerosis in recipient 
mice through adoptive transfer experiments [21]. 
They can modulate the immune response by secreting 
anti-inflammatory cytokines to promote the regression 
of inflammation to a more homeostatic condition re-
sulting in stabilization of the inflamed lesion. A proper 
understanding of the complex role of CD8+ T cells in 
atherosclerosis brings new opportunities to therapeutic 
targeting. Inhibition of the cytotoxic function of the 
CD8+ T cells modulation of their states of activation 

or the enhancement of the regulatory subset of CD8+ 
T cells would bring new ways in which atherosclerosis 
can be managed.

Depuydt et al. found a statistically significant accu-
mulation of the T cells, predominantly CD8+, in the 
examined atherosclerotic plaques. The comparison 
with blood T cells provides insights into the systemic 
immune response and its relationship with localized 
inflammation in the plaques [20]. The study by Maga 
et al. underscores the significance of activated effector 
CD8+ cells in the progression of atherosclerosis and 
restenosis due to their adhesion and homing to the 
injured vascular wall in patients with LEAD [22].

Th17 cells

Th17 cells, a subset of CD4+ T helper cells, are 
distinguished by their production of IL-17 and other 
pro-inflammatory cytokines such as Il-21, Il-22, Il-26 
or granulocyte-macrophage colony-stimulating factor 
(GM-CSF), and serve fundamental roles in host defen-
ce against extracellular pathogens, apart from playing 
roles in pathogenesis in various systemic autoimmune 
diseases [23–24]. The involvement of these cells in 
atherosclerosis is thus another example of this dual 
nature of immunological responses, where protecti-
ve mechanisms against pathogens can inadvertently 
promote disease under certain conditions. Therefore, 
Th17 cells, through their secretion of IL-17 and other 
pro-inflammatory cytokines, play a multifaceted role 
in the development of atherosclerosis. Wang et al. 
found that Th17 cells play a significant role in promo-
ting inflammation and advancing disease progression 
in hyperlipidaemic patients and atherosclerotic mice. 
Authors emphasize the potential of targeting Th17 cells 
as a therapeutic strategy for managing atherosclerosis 
and related arterial diseases [25]. IL-17 may stimulate 
macrophages to secrete other proinflammatory cy-
tokines, such as IL-1β, IL-6, and TNF-α so that they 
reinforce the local inflammatory response [26]. Th17-
-derived cytokines can also attract neutrophils to the 
plaque, which exacerbates inflammation and renders 
the plaque unstable. Chronic inflammation imposed 
by Th17 cells is not only involved in the progression of 
atherosclerotic plaques but also affects their instability. 
Indeed, it has been reported that the presence of Th17 
cells and their derivative cytokine, IL-17, is associated 
with features related to ruptured lesions, such as thin 
fibrous caps, large lipid cores, and increased infiltration 
of inflammatory cells that predominate, predispose, 
and rupture plaques, thus contributing to acute car-
diovascular events [27]. Th17 may also activate the 
vascular smooth muscle cells (VSMCs) to produce some 
inflammatory mediators and matrix metalloproteinases 
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(MMPs) which can degrade the extracellular matrix 
and weaken the structural integrity of the plaque. 
Furthermore, Th17 cells can promote endothelial cell 
activation, enhancing the expression of vascular cell 
adhesion molecule-1 (VCAM-1) and intercellular adhe-
sion molecule-1 (ICAM-1), which facilitate the adhesion 
and infiltration of more leukocytes into the intima [28].

In the context of LEAD, the role of Th17 cells 
gains additional significance due to the critical impact 
of inflammation on disease progression. Moaaz et al. 
revealed a significant increase of Il-17 activated by Il-9 
in a group of 84 patients with LEAD. The presence of 
Th17 cells and their signature cytokine, IL-17, in athe-
rosclerotic plaques and their association with disease 
markers in hyperlipidaemic patients, underscore the 
potential of these cells as targets for therapeutic in-
tervention [29]. In another study, authors identify Th17 
cells as a new angiogenic T cell subset and provide new 
insight into the mechanism by which T cells promote 
neovascularization after ischemia of lower limbs [30].

Tregs

Tregs are a subset of CD4+ T cells that help main-
tain immune system balance by regulating the activity 
of effector T cells and antigen-presenting cells (APCs). 
They achieve this through several mechanisms, notably 
the secretion of inhibitory cytokines such as transfor-
ming growth factor-beta (TGF-β) and IL-10 [31]. These 
cytokines are instrumental in suppressing pro-inflam-
matory responses and promoting the differentiation 
of naïve T cells into additional regulatory phenotypes, 
thereby curtailing the proliferation and activity of 
various immune cells [32]. Experimental models have 
demonstrated that enhancing the function or number of 
FOXP3+ Tregs can significantly inhibit the development 
of atherosclerotic lesions. This protective effect is 
attributed to Tregs’ ability to modulate lipoprotein 
metabolism, reduce inflammatory cell infiltration into 
lesions, and facilitate the clearance of lipoproteins such 
as very-low-density lipoprotein (VLDL) and chylomic-
ron remnants [33]. The promotion of plaque stability 
by regulatory T cells (Tregs) is a critical aspect of their 
protective role in atherosclerosis and contributes to 
plaque stability through several mechanisms [34]. Tregs 
can suppress the local inflammatory environment within 
atherosclerotic plaques, which is a key determinant of 
plaque stability. By secreting anti-inflammatory cytoki-
nes such as IL-10 and TGF-β, Tregs inhibit the activity 
of pro-inflammatory cells, including macrophages, Th1 
cells, and Th17 cells [35]. This suppression reduces the 
production of matrix metalloproteinases (MMPs), enzy-
mes that degrade the extracellular matrix and weaken 
the fibrous cap, making the plaque more prone to rup-

ture [36]. Ait-Oufell et al. found that Treg cell depletion 
in mice leads to the development of atherosclerosis in 
peripheral arteries. Moreover, transferring these Treg 
cells to mice reduced the size of the lesions and shifted 
the immune response towards an anti-atherogenic pro-
file. This protective effect was associated with T-cell 
signalling through TGF-β [37]. The potential of Tregs 
as therapeutic targets in atherosclerosis and LEAD is 
significant. Strategies to enhance Treg populations or 
their function within atherosclerotic lesions could offer 
a novel approach to disease management.

Th17/Treg balance

The Th17/Treg balance is a critical determinant of 
the immune environment within atherosclerotic plaqu-
es, influencing the progression of atherosclerosis [38]. 
This balance between pro-inflammatory Th17 cells and 
anti-inflammatory Tregs not only modulates local inflam-
mation within the arterial wall but also impacts systemic 
immune responses, which can have profound effects on 
plaque stability [39]. Chai et. al. studied a population 
of mice fed a high-fat diet for 8 weeks. They observed 
a statistically significant increase in Th17 lymphocytes 
without an increased percentage of Treg lymphocytes 
compared to the control group. The authors confirm 
that the imbalance between Th17/Treg plays a crucial 
role in the formation of atherosclerotic lesions [40]. In 
another study, the authors confirmed that in patients 
with coronary artery disease (CAD), there is a notable 
increase in Th17 cells and the levels of IL-17, IL-6, and 
IL-23 in their peripheral blood compared to healthy 
individuals. Conversely, there is a significant decrease 
in the number of Treg cells, IL-10, TGF-β, and Foxp3 
levels, as well as in the Treg to Th17 ratio. These findings 
indicate a pronounced imbalance between Th17 and 
Treg cells in CAD patients, highlighting the potential 
contribution to plaque instability and the occurrence 
of CAD episodes [41]. Modulating the Th17/Treg ba-
lance towards a more anti-inflammatory state could 
therefore represent a promising therapeutic strategy 
for managing LEAD. This could involve interventions 
aimed at reducing Th17 cell differentiation or enhancing 
Treg proliferation and function. Angong Niuhuang Pill, 
from traditional Chinese medicine, has been shown to 
protect atherosclerotic ApoE–/– mice. Authors found 
that this substance can reduce the expression level of 
Th17 cells and increase the expression level of Treg 
cells. This results in decreasing chronic inflammation, 
reducing plaque collagen fibres, and decreasing inflam-
matory cell infiltration by modulating ROR-γt and Foxp3 
expression [41]. It confirms that targeting the Th17/Treg 
balance represents a promising strategy for managing 
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atherosclerosis and improving outcomes for patients 
with LEAD.

TLRs

Toll-like receptors (TLRs) represent an important 
subclass of pattern recognition receptors playing an 
essential role in the development of innate immune 
responses and being activated by pathogen-associated 
molecular patterns (PAMPs) as well as danger-associa-
ted molecular patterns (DAMPs) [42]. This recognition 
triggers a cascade of inflammatory responses that con-
tribute significantly to the development and progression 
of atherosclerosis. Both the TLR2-TLR1 and TLR2-TLR6 
heterodimers have been implicated in promoting at-
herosclerosis in ApoE−/− mice and LDLR−/− mice 
[43–44]. One of the primary actions of TLRs in athe-
rosclerosis is the induction of endothelial dysfunction, 
a precursor to atherosclerotic plaque development. 
Activation of TLRs on endothelial cells by DAMPs, 
such as ox-LDL or PAMPs leads to the upregulation of 
adhesion molecules (e.g., VCAM-1, ICAM-1) and the 
secretion of chemokines. This facilitates the recruit-
ment and adhesion of circulating monocytes and T cells 
to the endothelium, promoting their transmigration into 
the intima where they contribute to plaque formation 
[45–47]. Ishibashi et al. found that TLR3 can regulate 
the activity of MMP-2 and MMP-9 in macrophages, 
thus affecting the instability of atherosclerotic plaques 
[48]. TLRs also amplify local and systemic inflammation 
by activating NF-κB and other transcription factors 
in immune cells, leading to the production of pro-
-inflammatory cytokines (e.g., TNF-α, IL-1β, IL-6). This 
inflammatory milieu further enhances the recruitment 
of immune cells to the lesion as well as amplifies en-
dothelial dysfunction and activates smooth muscle cell 
migration and proliferation, all processes associated 
with the complexity and vulnerability of plaques [49]. 
The chronic inflammation induced by TLR activation 
exacerbates the progression of occlusive plaques, which 
can lead to critical limb ischemia, a severe complication 
of LEAD. TLR-mediated inflammation not only acce-
lerates plaque growth but also contributes to plaque 
instability [50]. Furthermore, inflammation activated by 
TLR3 can impair angiogenesis and the development of 
collateral circulation, critical compensatory mechanisms 
in response to arterial occlusion [51]. However, the 
fact that TLRs are implicated in LEAD might provide an 
opportunity to target the receptors and their related 
inflammatory pathways for a new therapeutic strategy 
to provide proper control over the disease. Cen et al. 
examined atherosclerotic plaques taken from human 
popliteal arteries; the other group consisted of apoE-
-deficient mice. Both study groups showed increased 

expression of TLR-3. Thus, the authors confirmed the 
involvement of TLR-3 in the immunopathogenesis of 
lower limb atherosclerosis. In addition, a TLR-3-specific 
inhibitor (SMU-CX24) was isolated, which has great 
potential in the pharmacological treatment of athero-
sclerosis [52]. By modulating TLR signalling, it may be 
possible to reduce inflammation, stabilize plaques, and 
improve outcomes for patients with cardiovascular 
diseases. The article by Li et al. investigates the the-
rapeutic potential of corilagin, a natural compound, in 
treating Peripheral Artery Disease (PAD) by targeting 
the Toll-like receptor 4 (TLR4) signalling pathway. Co-
rilagin effectively inhibits TLR4 activation, leading to 
a reduction in inflammatory responses and endothelial 
dysfunction [53]. The complexity of TLR signalling 
pathways and their crucial roles in host defence against 
pathogens necessitates careful consideration to avoid 
unintended immunosuppressive effects. Furthermore, 
the heterogeneity of atherosclerotic disease and the 
specific contributions of different TLRs to its patho-
genesis require targeted approaches to modulate TLR 
activity effectively.

Conclusions 

This article has elucidated the intricate roles of 
various immune cells and the complex interplay of 
pro-inflammatory and anti-inflammatory mechanisms 
in the pathogenesis of atherosclerosis, with a specific 
focus on LEAD. the pro-inflammatory roles of CD8+ T 
cells and Th17 cells in promoting plaque instability and 
progression underscore the need for targeted therapies 
that can modulate these responses. Strategies aimed at 
reducing the cytotoxic effects of CD8+ T cells, inhibi-
ting Th17 cell differentiation, or shifting the Th17/Treg 
balance towards a more anti-inflammatory state could 
provide significant benefits in managing atherosclerosis 
and preventing the complications associated with LEAD. 
Moreover, TLRs are upregulated in the case of inflam-
matory processes occurring in atherosclerosis Targeting 
TLR-mediated signalling pathways could help in attenu-
ating the chronic inflammatory state that exacerbates 
plaque progression and instability. This review highlights 
the complexity of immune cell involvement and offers 
insight into potential therapeutic strategies targeting the 
immune system. Future research should focus on unra-
velling the detailed mechanisms of immune cell action in 
atherosclerosis and developing targeted interventions 
that can modulate these responses to prevent the 
progression of LEAD and improve clinical outcomes for 
patients. The integration of anti-inflammatory agents, 
immunomodulators, and targeted biologics into the 
treatment paradigm for LEAD represents a promising 
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avenue for enhancing patient care and addressing the 
challenges posed by this pervasive disease.
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